Negation by Default

Teodor Przymusinski
Department of Computer Science
University of California
Riverside, CA 92521, USA

(teodor@cs.ucr.edu)

UCR-CS-93-5

Abstract

In this paper, we propose a new semantic framework for disjunctive logic programs
by introducing the so called static expansions which extend to disjunctive programs the
notions of stable, well-founded and stationary (or partial stable) models while at the
same time generalizing the minimal model semantics of positive disjunctive programs.
For every disjunctive program P, we define first order extensions of P, called static
expansions of P. Any static expansion of P provides the meaning or semantics for P
by determining the set of true sentences about P. We show that among all static
expansions of a disjunctive program there is always the least static expansion and we
call it the static completion P of P. The static completion P is constructively defined
as a fixed point of a natural minimal model operator and can be iteratively computed.
The semantics defined by the static completion P is called the static semantics of P.
The static semantics always coincides with the set of sentences that are true in all static
expansions of P.

The class of static expansions represents a semantic framework which differs sig-
nificantly from the other semantics proposed recently for disjunctive programs and
databases. It is also defined for a much broader class of programs.

Keywords: Normal and Disjunctive Logic Programs, Deductive Databases, Seman-
tics , Artificial Intelligence.

1 Introduction

During the last couple of years a significant body of knowledge has been accumulated
providing us with a better understanding of semantic issues in logic programming and the
theory of deductive databases. In particular, the class of perfect models [ABW88, VG89,
Prz88] was shown to provide a suitable semantics for stratified logic programs. Subsequently,
two competing, but closely related [Prz91d, Prz91a], extensions of the class of perfect models
to normal, non-disjunctive logic programs were introduced and extensively investigated.
One of them is the class of well-founded models [VGRS90] and the other is the class of
stable models [GL88]. In [Prz90, Prz91c], another extension of the class of perfect models,
namely the class of partial stable models, later renamed stationary models [Prz91b], was
introduced!, for arbitrary normal programs. The class of stationary models includes both
the class of stable models and the class of well-founded models. Moreover, every normal

program has the least stationary model which coincides with its well-founded model.

The problem of extending these results and defining a suitable semantics for the class
of disjunctive logic programs and deductive databases turned out to be a difficult one, as
evidenced by a large number of papers [Ros89, BLM90, BLM89, Prz91c, GL90, Prz91b,
Dix91] and the recent book [LMR92] devoted to this issue.

In this paper, we propose a new semantic framework for disjunctive logic programs by
introducing the so called static expansions of a disjunctive logic program which extend to
disjunctive programs the notions of stable, well-founded and stationary models while at the
same time generalizing the minimal model semantics of positive disjunctive programs. For
every disjunctive program P, we define first order extensions of P, called static expansions of
P. Any static expansion of P provides the meaning or semantics for P by determining the
set of true sentences about P. We show that among all static expansions of a disjunctive
program there is always the least static expansion and we call it the static completion P of
P. The semantics defined by the static completion P is called the static semantics of P.
The static semantics always coincides with the set of sentences that are true in all static

expansions of P.

The static completion P is constructively defined as a fixed point of a natural minimal
model operator and can be iteratively constructed by starting from P° = P, i.e., from the
program P itself, and then at every successor step adding to the previous iteration P" those
sentences which are true in all minimal models of P", resulting in the next iteration P"*!,
The construction continues until no new sentences can be added, i.e., until P! = P™_ at

which point the static completion, P, is obtained.

Readers familiar with autoepistemic logic will notice that the definition of static expan-

sions is closely related to autoepistemic logic and they are referred to [Prz91a, Prz93] for

!Partial stable models were also called $-valued stable models.

more information on the nature of this relationship.

The class of static expansions represents a semantic framework which differs significantly
from the other semantics proposed recently for disjunctive programs and databases and is
defined for a much broader class of programs. Since for normal programs static expansions
correspond to stationary (or partial stable) models, they provide a natural characterization

of this important class of models.

The paper is organized as follows:

e In Section 2 we extend the propositional language to allow us to formally ezpress the

so called “negation by default” not C' which appears in premises of program clauses.

e In Section 3 we define the default formalism providing the desired meaning for the

negation by default.

e In Section 4 we develop a formal definition of static expansions and static semantics

based on this formalism.

e In Sections 5 and 6 we give examples and investigate properties of static expansions

and static semantics in the class of normal and disjunctive programs, respectively.

e In Section 7 we discuss natural extensions and modifications of the proposed semantic

framework.

e Section 8 contains concluding remarks, including a discussion of the relationship be-
tween static semantics and the other semantics proposed for normal and disjunctive

logic programs.

2 Propositional Language

A disjunctive logic program (or a disjunctive deductive database) P is a set of informal

clauses of the form
AV..VA <+ BiN...ABy, AnotCi A ... Anot Cy, (1)

where [> 1; m, n > 0 and A;, B; and C;’s are atomic formulae. If [= 1, for all clauses,
then the program is called normal or non-disjunctive. As usual, we assume (see [PP90]) that
the program P has been already instantiated and thus all of its clauses (possibly infinitely
many) are propositional. This assumption allows us to restrict our considerations to a
fixed propositional language L. In particular, if the original (uninstantiated) program is

function-free then the resulting objective language L is finite.

Clauses (1) are informal because the negation symbol not C' does not denote the classical
negation —C of C but rather the so called negation by default, whose intended meaning is
roughly:

not C = negationof C canbeassumedbydefault.

Before making an attempt to properly formalize negation by default not C we must first be
able to express it in our language. After all, propositional logic includes only one connective

w__”
-

for negation, namely , and this connective represents classical negation. One possibility
to achieve this goal would be to add a new negation connective “not” to the language;
another possibility would be to view not C as a modal operator in modal logic. Both

approaches, however, would take us out of the realm of classical propositional logic.

Instead, we use a different approach (see [Lif86]) which allows us to stay entirely within
the bounds of propositional logic. Namely, we extend the original propositional language
L by augmenting it with additional propositional symbols D, with the intended meaning
that “F is true by default”. The extended language L* is obtained therefore by adding a

new propositional symbol Dr for every propositional formula F' in the original language L:
LY=L U {D,:F €L}
We call the new propositional symbols Dg default propositions. Formulae that do not

contain any default propositions are called objective formulae?®.

We assume the following two simple axiom schemes describing the properties of default

propositions.

The Consistency Axioms: For any tautologically false objective formula F':

-Dp . (2)

The Distribution Axioms: For any objective formulae F' and G:

Drpng = DrpADg. (3)

The first axiom schema states that tautologically false formulae cannot be true by de-
fault. The second axiom schema states that the conjunction F' A G of formulae F' and G is
true by default if and only if both F' and G are true by default. From now on, we assume
that all theories include the axioms (2) and (3) and are closed under the usual propositional
consequence. In other words, when we mention a theory 7" we in fact have in mind the
theory:

T' = Con{T U (2) U (3)}.

21t is easy to extend the objective language so that it allows also nested default formulae. Since they are
not needed for our purposes, we do not discuss this issue in this paper.

We can now formally express negation by default not F' by means of the default propo-

sition D_g:
d
not F' = D_r

<

thus giving it the intended meaning of “negation of F' is true by default”, or, equivalently,
“F is false by default”. This allows us to replace the informal program clauses (1) by the
formulae:

AIV..VACBIAN...ANABuAND-cy; A...ND—¢, (4)

of classical propositional logic in which [> 0, m,n > 0, A;’s, B;’s and C;’s are objective
propositional symbols, D-¢,’s are default propositions and C represents standard mate-
rial implication. In other words, the introduction of default propositions Dg allows us to

formally talk about two different types of negation:

e (Classical negation —F,

and

e Negation by default D_p.

Observe that the distributive axiom (3) implies that D_¢, A ... A D_¢, is equivalent
to D¢y a...A-C,,, Which suggests the following, much more general, definition of disjunctive

logic programs.

Definition 2.1 (Generalized Logic Programs) By a generalized logic program we
mean a (possibly infinite) set of arbitrary propositional clauses in the extended language

L*, namely, formulae of the form:
AV..VALVDr V...VDg, CBiAN...ABx, ANDg, A...\Dg, (5)

where m,n,k,l > 0, A;’s and B;’s are objective atoms and F;’s and G;’s are arbitrary

objective formulae. In particular, programs of the form:
AV..VA, CBIN...ANByANDg, A... \Dg, (6)
where m > 0, for all clauses, will be called non-negative.

Clearly, disjunctive logic programs, defined in (4), are a special case of non-negative
generalized logic programs. The class of generalized logic programs is much broader since it
permits empty heads and allows default consequents Dy and more general default premises

Dg. For example, we can have a program clause of the form:
-AV-BCCAD-sv-B

which says that if C is true and if ~A V =B can be assumed true by default then —AV —-B

is true. It is logically equivalent to:

false CAANBACAD_py-B -

4

It is important to point out that the negation symbol “—~” represents here the true classical
negation and not the so called ezplicit negation in the sense of Gelfond and Lifschitz [GL90].
Since the implication symbol represents also classical material implication we can freely
move literals from one side of the implication to the other. In Section 7 we show how one

can further extend this class of programs to allow the use of explicit negation.

In the sequel, unless stated otherwise, by a logic program we mean a generalized logic

program defined in (5). We close this section with the following easy lemma.

Lemma 2.1 The implication:
DF D) _‘,D—\F (7)

is a logical consequence of the axioms (2) and (3).

Proof. To prove (7) it suffices to observe that:

2
Dr D -D_p = -DpV-"Dp = -Dpp-rp = true. O

—~
~

The formula (7) states that if F' is true by default then F' cannot be false by default.
Observe that the reverse implication =Dr D D_r , namely that F' is false by default if F'is

not true by default, is generally not true.

3 Default Formalism

We now have to select a default formalism which will be used in the next section to formally
define the meaning of default propositions Dr. We choose Minker’s Generalized Closed
World Assumption GCW A (see [Min82, GPP89]) or McCarthy’s Circumscription [McC80]
which says that a formula F' is true by default if and only if F' is true in all minimal models
of the theory, i.e., if and only if F' is minimally entailed by the theory. In other words,
we intend to base the meaning of default propositions Dy on the principle of predicate
minimization:
Dr = F istrueinallminimalmodels.

In particular, the intended meaning of negation by default D_r is to be given by:

d
not F %f D_r = F isfalseinallminimalmodels.

We now give a formal definition of minimal models and minimal entailment.

Definition 3.1 (Minimal Models) By a minimal model of a propositional theory £ in
the extended propositional language L*we mean a model M of £ with the property that there
1s no smaller model N of €& which coincides with M on default propositions. If an objective

formula F is true in all minimal models of £ then we write:

& Izmin r

and say that F is minimally entailed by €.

For readers familiar with circumscription, this means that we are considering predi-
cate circumscription CIRC(E;O) of the theory £ in which objective propositions O are
minimized while default propositions are fixed3. In other words, minimal models are ob-
tained by minimizing objective propositions and assigning arbitrary truth values to default

propositions Dp.

The reason that we treat objective and default propositions differently is that the truth
values of default propositions Dr intuitively represent an arbitrary possible world or scenario
and thus are not minimized, while objective propositions represent objective knowledge

which is subject to minimization based on GCW A.

Throughout the paper models are represented as (consistent) sets of literals. An atom A
is true in a model M if and only if A belongs to M. An atom A is false in a model M if and
only if = A belongs to M. A model M is total if for every atom A either A or —A belongs to
M. Otherwise, the model is called partial. Unless stated otherwise, all models are assumed
to be total models. Clearly a (total) model M is smaller than a (total) model N if and
only if it contains less positive literals (atoms). When describing models we usually list
only those of their members that are relevant for our considerations, typically those whose

predicate symbols appear in the program that we are currently discussing.

Example 3.1 Consider the following normal program P:

Fly <« mnot Ab

or, after translation:

Fly C D-_ap

where Ab stands for “Abnormal”. In order to find minimal models of P, we need to assign
an arbitrary truth value to the default proposition D, and then minimize the objective
propositions Ab and Fly. We easily see that P has the following two classes of minimal

models:
M, = {Flya _'Ab7 ‘D—‘Ab}

M, = {_'Flya_'Aba _‘D—.Ab}-

Since the proposition Ab is false in all minimal models of P, while Fly is false only in some

of them, we have:

P Epin —Ab but P Venin —Fly and P Wi, Fly.

While the choice of predicate minimization as a default formalism is quite natural and

seems to correspond closely to the intuitive meaning of negation in logic programs and

3The author is grateful to L.Yuan for pointing out the need to use prioritized rather than standard
circumscription [YYar].

deductive databases, within the same general framework other non-monotonic default for-
malisms can be used, leading, in general, to different semantics. We discuss such possible

modifications in Section 7.

4 Static Expansions and Static Completions

We now define static expansions and static completions of an arbitrary generalized logic
program P. The definition is based on the idea of building an extension P of the program
P obtained by augmenting P with precisely those default atoms Dr for which F is true in
all minimal models of P. Consequently, the definition of static expansions precisely enforces

the intended meaning of default propositions Dr as specified in the previous section.

Definition 4.1 (Static Expansions) A static expansion of a program P is any proposi-
tional theory P which satisfies the following fixed point condition:

~

P=PU{Dp: P pin F}, (8)
where F' is an arbitrary objective formula.

We recall that all theories are assumed to be closed under the usual propositional conse-
quence. Although the definition of static expansions is similar to the definition of Moore’s
stable autoepistemic expansions [Moo85], it uses satisfaction by default D instead of log-
ical satisfaction Ly and it does not specify when a default proposition D is false in the
expansion. As a result, properties of static expansions are very different from the properties
of stable autoepistemic expansions. We also note that, in general, we do not assume that

static expansions are consistent theories.

It turns out that every generalized logic program P has the least (in the sense of inclu-
sion) static expansion P which is called the static completion of P. Static completion P has
a constructive and iterative definition as the least fized point of a monotonic operator Wp
defined below. This property of static expansions is in sharp contrast with the properties
of stable autoepistemic expansions which typically do not have least expansions and do not

admit constructive definitions.

Definition 4.2 (Default Closure Operator) For any program P define the default clo-

sure operator Wp by the formula:
Up(E) =PU{Dr:€ Emn F} (9)
where £ is an arbitrary theory.
We begin with the following easy observation.

Proposition 4.1 A theory £ is a static expansion of the program P if and only if £ is a
fized point of the operator Up, i.e., if E =Vp(E).

Proof. Theory € is a fixed point of the operator ¥p if £ = Up(E) =PU{Dr : & Emin
F'} which happens if and only if £ is a static expansion of P. O

Consequently, in order to show that every generalized logic program has the least static
expansion we need to prove that the operator Vp has the least fixed point. We first establish

the monotonicity of the operator Up.

Proposition 4.2 The operator ¥ p is monotonic. More precisely, suppose that the theories

E and &' are extensions of P obtained by adding some default propositions Dg to P.

If £ CE then¥p(E) CUp(E) .

Proof. Suppose that:
E=PU{Dp,: s€8}, & =PU{Dp,: s€S}and SC S

We have to show that Up(E) CUp(E'). It suffices to show that if £ =, F then &' =pin F.
Suppose that & FEmin F and let M be an arbitrary minimal model of £’. Since £ C £’ and
since £ and &' differ only on the set of default atoms and minimal models do not minimize
default atoms, M is also a minimal model of £&. We conclude that M = F and therefore
&' Emin F. Consequently, D € ¥p(E') which completes the proof. O

i From Propositions 4.1 and 4.2 and the well-known Theorem of Tarski, ensuring the

existence of least fixed points of monotonic operators, we easily obtain:

Theorem 4.1 (Least Static Expansion) FEvery generalized logic program P has the
least static expansion, namely, the least fized point P of the monotonic default closure

operator Up.

The least static expansion P of a program P can be constructively computed as follows.
Let:
P'=pP

and suppose that P* has already been defined for any ordinal number a < . If = a+1

s a successor ordinal then define:
PP = Up(PY) = PU{Dp: P* }=pin F},

or, equivalently (because the sequence {P®} is monotonically increasing):
PP = Up(P*) = P*U{Dp: P* f=pin F},

where F' denotes any objective formula. Else, if 8 is a limit ordinal, define:

Ph =] P~
a<f

The sequence { P®} is monotonically increasing and thus has a unique fized point P = P =
Up(P*) = P!, for some ordinal X\. Moreover, if the objective language L is finite (in
particular, if the original, uninstantiated program P is function-free) then the fized point P

1s reached after finitely many steps A.

Proof. By Proposition 4.2 the operator ¥p is monotonic. By the well-known Theorem
of Tarski it must therefore have the least fixed point P constructed by consecutive iterations
of the operator. From Proposition 4.1 we infer that the least fixed point P of the operator

U p is the least static expansion of P.

If the objective language L is finite then clearly the construction has to stop after
finitely many steps. In particular, if the original (uninstantiated) program P does not
contain functional symbols then the resulting objective propositional language £ is finite.

O

Definition 4.3 (Static completion) The least static expansion P of a program P is
called the static completion of P.

Since the static completion of a program P is obtained by augmenting P with the least
possible number of default propositions D, it can be viewed as the most skeptical among
static expansions (cf. [HTT87]). Like Clark’s predicate completion COM P(P) of a program
P, the static completion P of P describes the semantics of P by defining the set of true

sentences about P.

Definition 4.4 (Static Semantics) By the static semantics of a logic program P we mean

the semantics consisting of those sentences that are true in the static completion P of P.

More generally, any class K of static expansions of a program P naturally defines the
corresponding semantics consisting of those sentences that are true in all expansions be-
longing to class K. Observe, however, that since the static completion of a program P is
the least (in the sense of inclusion) static expansion of P, it contains those and only those

formulae which are true in all static expansions of P.

One of the important strengths of static semantics is the fact that it can be computed
by means of the constructive iterative minimal model procedure given in Theorem 4.1. As
a result, static semantics not only has an elegant fixed point characterization but it can
simply be viewed as the iterated minimal model semantics. The last fact is important from
the procedural point of view. Namely, once a suitable procedure is devised to compute the

minimal model semantics, it can then be iteratively applied to compute the static semantics.

The following theorem significantly extends Theorem 4.1 and provides a complete char-

acterization of all static expansions of a generalized logic program.

Theorem 4.2 (Characterization Theorem) A theory P is a static expansion of a gen-

eralized logic program P if and only if

(i) P is the static completion P U {Dp, : s € S} of a program P U {Dp, : s € S},

and,
(i) P satisfies the condition that P Emin Fs, for every s € S.
In particular, the least static ezpansion P is obtained when the set {DF, : s€ S} is
empty and thus P=".
Proof. (=) Suppose that P is a static expansion of P. Then:

P=PU{Dp: P =pn F}.

Since P obviously satisfies the condition that P |= D if P |=min F, we infer that P =P =
P U {Dp: P Emin F}, which shows that P satisfies the condition of the Theorem.

(<=) Suppose now that P is the static completion P U {DrF, : s€ S} of a program
P U {Dp, : s€ S} and satisfies the condition that P |=p, Fj, for every s € S. Since P
is the (least) static expansion of the program P U {Dp, : s € S} we have:

P=PU{Dg,: s€S} U {Dp:Plmmn F}
Since P Emin Fs, for every s € S we obtain:
P =P U {Dp: P Emin F},
which shows that P is a static expansion of P. The last part of the claim follows immediately

from Theorem 4.1. O

According to the above theorem, in order to find a static expansion Pofa program P

one needs to:

e Select a set { Dp, : s € S} of default propositions.

e Construct the static completion P = P U {Dr, : s € S} of the augmented program
PU{Dp, : s € S} using the iterative fixed point definition from Theorem 4.1.

e Show that P Emin Fs , for every s € S.
It is the first part, namely, the selection (guessing) of the set of default propositions
{DF, : s € S}, that is most difficult. However, one can always choose the empty set to

obtain the least static expansion, or, equivalently, the static completion P of the program
P.

Theorem 4.1 also immediately implies:

10

Corollary 4.3 (Greatest Static Expansion) FEvery generalized logic program has the

greatest static expansion which is always inconsistent.

Proof. Let P = P U {Dap-a}, where A is an arbitrary atom. Clearly P is inconsistent
because “D -4 also belongs to P by the Consistency Axioms. Thus P = AA—A, which,

by Theorem 4.1, implies that Pisa stationary expansion.
Example 4.1 Consider the normal logic program P discussed in Example 3.1:
Fly <+ mnot Ab

or, after translation:

Fly C D

Its static completion is given by (see Convention 4.1 below):
P=PU{D_ 4, Dy}
Indeed, we showed in Example 3.1 that P \=p;, ~Ab and therefore:
Py =Up(P)=P U {D_ap}-
Since, P U{D_p} = Fly we obtain:
Py =Up(P1) =PU{D_ 4y, Dpyy}-

We easily verify that Py is a fized point, i.e., that Py = Up(P3) and therefore P = Py is
the static completion of P.

It is easy to check, using Theorem 4.2, that P does not have any other (consistent) static
ezpansions. For ezample, to show that P = P U {D 44} is not a static expansion of P it
suffices to note that p Fmin Ab.

Observe that there is a natural correspondence, between the unique static expansion P of

P and the unique perfect (well-founded, or stable) model M = {=Ab, Fly} of P in which
Fly is true and Ab is false.

Convention 4.1 Here, and in the rest of the paper, we list only the relevant elements
Dr of static expansions P and program iterations P®. For example, the static completion
P=PU {D_ 4p> ’DFly} of the program P discussed in the previous example also contains
default propositions Dpyyy-riy o7 Dryyy-ap, because the formulae Fly V —Fly and Fly vV
—Ab are logical consequences of = Ab and Fly and thus if the latter formulae hold in all
minimal models then so do the former ones. However, since default propositions Driyv-riy
or Driyv-ap do not appear in clauses of the program P, they can be viewed as irrelevant
and thus skipped. To make this convention absolutely precise we will from now on assume
that whenever we say that P U {DFS : s € S} is a static expansion Pora program iteration
P then, in fact, we mean that the theory P U {Dp : {Fs}scs = F'} has this property.

11

Example 4.2 The static completion P’ of the logic program P' given by:

Fly C D—|Ab
- Fly

consists of:
P =P U {D_y,, Dy }-

It is therefore inconsistent, which reflects the fact that the program seems to describe con-

tradictory information.

The last example shows that the static completion P of a consistent logic program P
may be inconsistent. It follows from Theorem 4.1 and from Corollary 4.3 that a program
P either has a consistent least static expansion (or static completion) P or it does not
have any consistent static expansions in which case its least and greatest static expansions
coincide. The following theorem shows that static completions of non-negative generalized

logic programs (6) are always consistent.

Theorem 4.4 Static completion P of any non-negative generalized logic program P is al-
ways consistent. In particular, static completion P of any normal or disjunctive logic pro-

gram P is always consistent.

Proof. We will prove by inductionthat P%, as defined in Theorem 4.1, is consistent,
for every a. To see that P = P is consistent it suffices to take an interpretation of £* in

which all default atoms are false and all objective atoms are true.

Suppose that we already proved that P¢ is consistent, for any o < 8. If § is a limit
ordinal then, by the Compactness Theorem, P? must also be consistent as a union of an

increasing sequence of consistent theories. If 8 = o + 1 then
PP =PU{Dp:P* =pin F}.

Since P is consistent, the class of formulae F' minimally entailed by P% constitutes a
consistent theory and therefore it does of contain any tautologically false formulae. Define
an interpretation M so that all the objective atoms and all the default atoms Dg such that
P® = F are true in M while all the remaining default atoms are false. Clearly M is a
model of P? which satisfies axioms (2) and (3). We conclude that P? is consistent, which

completes the inductive proof. O

Observe that the definition of static expansions and completions P carefully distin-
guishes between these formulae F' which are known to be true in 13, i.e., those for which
P = F, and those formulae F' which can only be assumed to be true by default, i.e., those
for which P = Dp. This important distinction not only increases the expressiveness of the

language but is in fact quite crucial for many forms of reasoning, e.g., for common-sense and

12

abductive reasoning. However, if we wanted to use the closed world assumption to ensure
that a formula F' is always true whenever it is true by default, we could easily achieve this
Dr

goal by adding the simple derivation rule =F .

We are now ready to discuss more examples and prove additional properties of static

expansions and static semantics.

5 Static Expansions of Normal Programs

We first study normal, non-disjunctive programs.
Example 5.1 Consider the following program P:
Bird <+

Ab <+ notBird
Fly <+ mnot Ab,

or, after translation:

Bird
Ab C D-_Birg
Fly C D_gp-

In order to compute its static completion P we let P° = P and observe that since P° Emin
Bird we have
P'=Up(P% =P U {Dgira}-

By Lemma 2.1, P! |= =D_pirq and therefore P! |Emin = Ab which implies:
P?=Up(PY) =P U {Dgira, D-m}-

Since P?2 = Fly we obtain:

P3 = Up(P?) = P U {Dpira, D-ap, Driy}-

One easily checks that P> = Up(P?3) is a fized point of Up and therefore P = P3 is the

static completion of P.

Using Theorem 4.2 one easily verifies that this program does not have any other (consis-
tent) static expansions. There is an obvious correspondence between the unique static expan-
sion P of P and the unique perfect (well-founded, or stable) model M = {Bird,—Ab, Fly}
of P in which Bird and Fly are true and Ab is false.

13

Example 5.2 Consider the following normal program:

ACD—|B
BCDﬁA
Q C A
Q C B.

Since P has minimal models in which both D_4 and D_p are true (respectively, false) and
thus all of A, B and Q are true (respectively, false) P {min A, P [fEmin —A, etc., which
shows that P [~ Da, P [~ D-a, etc. Thus (subject to Convention 4.1):

P = P.

However, in addition to the least static expansion 150 = P, this program has two more

static expansions, namely:

ﬁl = m:PU{DA, DﬁBaDQ}
B, = PU{D_4} =PU{D-4, Dy, Dg}.

Indeed, according to Theorem 4.2, to show that 131 (respectively, 132) is a static expansion
it suffices to show that P U {D-p} =min B (respectively, P U{D_A} =min ~A). Clearly,
PU{D-g} = AAQ and thus PU{D_p} |F DaADg. By Lemma 2.1, PU{D_p} | ~D-4
and therefore P U{D-p} Emin ~B which implies that P U {D_g} |= D_p. The proof that
m Emin 24 is completely symmetric.

It is easy to see that P does not have any other (consistent) static expansions. Observe
that there exists a one-to-one correspondence between stationary models M; of P [Prz90,

Prz91c] and static expansions of]3Z of P. Indeed, P has three stationary models, namely:

Mo = {}
M,y {Aa _'BaQ}
My, = {_'A,BaQ}

which precisely correspond to static expansions 130, Py and 132, respectively. Models M and
My are stable but the least (well-founded) model My is a partial model which corresponds to

the least static ezpansion (static completion) Py = P.

The above example underlines that fact that D_4 represents a strong interpretation of
negation by default not A, namely, the one that requires that we establish that A is false
in all minimal models in order to prove D_ 4. Since, in the preceding example, we cannot
prove that either A is false in all minimal models or that B is false in all minimal models

we cannot conclude either D_ 4 or D_pg in P.

14

Example 5.3 Consider the following normal program due to Van Gelder [VGRS90]:

A C D.p
B C D_4
Q C D
Q C D-j4.

This program has precisely three (consistent) static expansions, namely:

P, = P
P, = PU{D.p}=PU{D4, D_5}
P, = PU {'D_‘A} =PU {D_‘A, DB,DQ}-

The proof that 13Z ’s are static expansions is identical as in the previous example. To verify
that P1 does not contain Dg observe that P =PU {D4, D-p} and PU{D4, D-p} has

precisely two types of minimal models, namely:

Ml = {Aa_'B’ Qa ,DAaD—!BalD—'Q}
M2 = {Aa_'Ba _'Qa DAaD—'Ba_'D—'Q}'

which implies that:

P, Emin Q and P Fmin 7@ andtherefore 2 ¥ Dg and 2 ¥ D-q .

Again, there exists a one-to-one correspondence between stationary models M; of P
[Prz90, Prz91c] and static expansions of 13z of P. Indeed, P has three stationary models,
namely:

My, = {}
M, = {A,-B}
My = {-4,B,Q}

which precisely correspond to static erpansions 130, Py and 132, respectively. Model Mo is
stable but both models My and My are stationary. As before, the well-founded model My

corresponds to the static completion P.

It turns out that the one-to-one correspondence between stationary models and consis-

tent static expansions holds for all normal programs:

Theorem 5.1 Let P be an arbitrary normal program and let L denote an arbitrary (ob-
jective) literal. There is a one-to-one correspondence between stationary (or partial stable)
models M of P and consistent static expansions P of P. Namely, if M is a stationary
model of P, then

P=PU{Dy: Le My}
18 a consistent static expansion of P. Conversely, if P is a consistent static expansion then

M ={L:Dj, e P}

15

is a stationary model of P.

In other words:
LeM = 7D,elP.

Proof. Proof is contained in the Appendix. O

Static expansions provide therefore an equivalent description of stationary models. It
has been shown in [Prz90, Prz91c| that every logic program P has at least one stationary
model and that among all of its stationary models there is always the smallest stationary
model which coincides with the well-founded model. In view of the above Theorem, we

immediately conclude:

Corollary 5.2 For every normal program P the well-founded model Mp of P corresponds
to the static completion P of P. Consequently, for normal programs, the static, the station-

ary and the well-founded semantics all coincide.

Stationary (or partial stable) models of a normal program P include as a proper subset

the class of all (total) stable models. From Theorem 5.1 we immediately infer:

Corollary 5.3 Let P be an arbitrary normal program. A model M of P is stable if and

only if the static expansion P that corresponds to M satisfies the condition that:
DsEP or D€ 13, forany(objective)atom A

i.e., if it completely decides the default status of all objective literals.

6 Static Expansions of Generalized Logic Programs

We now consider examples of generalized logic programs (5), and, in particular, examples
of disjunctive programs (4). According to Theorem 4.4, every non-negative generalized logic
program, and, in particular, every disjunctive logic program P, has a consistent least static
expansion P. According to Theorem 5.1, the class of static expansions of generalized logic
programs extends the class of stationary models of normal programs and therefore the static
semantics extends the well-founded semantics of normal programs. As we will see below,
static semantics also extends the minimal model semantics of positive disjunctive programs.

We first consider the following example.
Example 6.1 Let P be the positive disjunctive program consisting of a simple disjunction:
AV B.

Since
P Izmm AV B and P Izmz'n -AV -B.

16

we obtain:
Pl = \I/P(P) = P U {DAVB, D—|AV—\B}'

It is easy to see that P! = Up(P') is a fired point and therefore P = P is the static
completion* of P. It describes therefore the minimal model semantics of P, namely, the
semantics consisting of formulae AV B and ~AV —B. Program P does not have any other

(consistent) static expansions. O

The next result proves that the static semantics of positive disjunctive programs always

coincides with the minimal model semantics.

Theorem 6.1 Fvery positive disjunctive program P has precisely one consistent static ex-
pansion (or static completion) P which naturally corresponds to the minimal model seman-
tics of P, namely:

F:PU{'DF:P|:minF}.

Proof. Since P does not contain any default premises its static completion P given by

Theorem 4.1 is obtained after just one iteration, i.e.,
F:PU{'DFP Izmm F} O
Example 6.2 Let P be the disjunctive program consisting of clauses:

AV B
C C D_aND-p.

Let P = P. Clearly, in all minimal models of P° the objective disjunctions AV B and
= AV =B hold true. Therefore:

P° =.in AVBand P° =, ~AV-B
and, consequently:
P! =Tp(P) = P°U{Davp,D-av-B}-

Now, from Lemma 2.1 it follows that P' |= =D_aa-p and therefore P! | =D_4 V =D_p.
Consequently:
P! Emin —C andthus pP?= \I/p(Pl) = Ply {D-c}-

It is easy to see that P2 = Up(P?) = P3 is a fived point and therefore:
F =PU {DAVB7D_|AV_‘B’ D‘!C}

The resulting semantics coincides with the perfect model semantics of disjunctive programs
introduced in [Prz88]. One easily verifies that P does not have any other (consistent) static

ETPaAnsions.

4We recall again Convention 4.1.

17

Example 6.3 Consider now the following non-negative generalized logic program P de-

scribing the state of mind of a person planning a trip to either Australia or Europe.

Australia V Europe

Cry C D-austratian-Europe
Happy C D-cry
Bunkrupt C DAustralia/\Europe

Save_Money C D- aystraliav—Europe
Cancel_Reservation C D-aystralia
Cancel_Reservation C D-Egyrope

Buy Tickets C Daystralia

Buy Tickets C DEgurope -

Let P° = P. Clearly, in all minimal models of P° the objective disjunctions Australia V
Europe and —~Australia V ~Europe hold true. Therefore:

PO Emin Australia V Europe and p° Emin —Australia V = Europe
and, consequently:

1 0
P = \IIP(P) =PU {DAustraliaVEuropea DﬂAustraliaVﬁEurope}-

Now, from Lemma 2.1 it follows that P' | —D_austratiar-Europe ond P! |=

_'DAustmlia/\Europe and therefore:
p! Fmin —CTy, P! Emin " Bunkrupt and p! Emin Save_Money
and thus

P? = Up(P') = PU{D austratiav Europes D Austratiav-Europes DSave_Moneys D-Bankrupts D-Cry }-
Consequently, P? Emin Happy and therefore:

P3 = Up(P?) = P? U {Dyappy}-
It is easy to see that P3 = Up(P3) = P* is the fized point and therefore:

P=PU {DAustraliaVEuropea DﬂAustraliaV—'Eu'ropea DS(we_Moneya ,D—|B(mk'rupt> D—Crya DHappy}-

It establishes that the individual is expected to travel either to Australia or Europe and thus
not Cry and be Happy but he is also expected not to do both trips and thus to Save_Money

and not become Bankrupt.

Finally, it is easy to see that there is a minimal model of P in which Daystratia and
“D-Europe are true and thus also —D- aystralia, ~Cancel_Reservation and Buy_ Tickets

must be true. Similarly, there is a minimal model of P in which D- gustratia and “DEurope

18

are true and thus also —D aysiratia, " Buy Tickets and Cancel_reservation must be true.

Consequently (using obvious abbreviations):
P Vmin CR , P [fmin BT and P fmin ~CR |, P {min BT .
One easily verifies that P does not have any other (consistent) static expansions.

Observe that the above construction closely resembles the method used to define the
perfect model semantics of stratified programs (see [ABW88, VG89, Prz88]). Its added
significance, however, lies in the fact that, as opposed to stratification, it works for all
programs. More work is needed, however, to determine effective ways of computing static
completions of disjunctive programs. The main stumbling block is the problem of computing

the minimal model semantics of disjunctive programs.

It is important to point out that the static completion (or static semantics) P of the
previously considered program P does not contain D- aystratia V P-Europe 0T Daustratia V
DEurope even though it contains D- gystratiav-Europe 304 D aystraliav Europe- As a result, as
we have seen, Cancel_Reservation and Buy Tickets are not logical consequences of the
static semantics®. This reflects the notion that from the fact that a disjunction F V G is
true by default, one does not necessarily want to conclude that either F' is true by default
or G is true by default. In this case, we do not want to cancel our reservations (respectively,
buy tickets) to either Australia or to Europe until we find out precisely which one of them
we will actually visit and which one we will not. In other words, we usually do not want to

assume that the default operator D is distributive with respect to disjunctions®.

However, if needed, we could easily ensure distributivity w.r.t. disjunctions by assuming
the distributive aziom schema Dpyg = Dr V Dg. The fact that the definition of static
expansions can be easily modified to accommodate various domain-specific requirements

underlines the flexibility of the proposed framework.

Example 6.4 Finally, let us consider the following generalized logic program P (cf.
[Prz91c]):

Work NV Tired V Sleep
Work C D-rTired
Sleep C D-_work
Tired C D-gieep
Happy C D-abnormal
—Happy C Work A D_pgiq
Paid.

SHowever, by Lemma 2.1, P contains the weaker formulae =D aystratiaAEurope = D austratia ¥V DBurope-

and _‘DﬁAustralia/\ﬁE‘urope = _‘DﬁAustralia \% _|D—.Europe-
5This feature of static expansions represents one of several major differences between static expansions

and stationary expansions introduced earlier in [Prz91b].

19

Intuitively, it says that the person involved is either asleep, tired or working but it is not
exactly clear which. Moreover, (s)he is normally happy, except when (s)he works and is not

paid for it. However, (s)he has been paid and therefore has no reason to be unhappy.

This program has precisely one (consistent) static expansion, namely:

P=PU {DWorkVTiredVSleepa DﬂWorkV—'Tired\/—'Sleepa Dpaidy D-Abnormal; DHappy}a

which seems to agree with its intended meaning. Observe that the program contains (true
classical) negation in the head of one of its clauses. Moreover, it does not have any (partial
or total) disjunctive stable models [Prz91c, GL90], and therefore its disjunctive (partial or

total) stable semantics is undefined. O

7 Extensions

The proposed formalism is quite flexible by allowing various extensions and modifications.

In this section we discuss some of such possible extensions.

7.1 Using a Different Default Formalism

In our approach we used the minimal model semantics £ i, F or the Generalized Closed
World Assumption GCW A [Min82] to define the meaning of satisfaction by default Dp. In
other words, D is supposed to be true in a static expansion & if and only if F is true in
all minimal models of £&. While the choice of predicate minimization (or circumscription)
as a default formalism for satisfaction by default Dg is very natural and seems to closely
correspond to the intuitive meaning of negation in logic programs and deductive databases,
other non-monotonic default formalisms can be used in place of predicate minimization,

naturally leading to different notions of default satisfaction and thus to different semantics.

For example, by using the weak minimal model semantics £ =ymin F or the Weak
Generalized Closed World Assumption W GCW A [RLM89, RT88] requiring that D is true
in a static expansion & if and only if F' is true in all weakly minimal models of £, one can

ensure that disjunctions are treated inclusively rather than exclusively.

Example 7.1 Consider the following program P :

AV B
C C DasANDp

Let P° = P. Clearly, in all weakly minimal models of P® the objective disjunction AV B
holds. On the other hand, while the disjunction AV —B is true in all minimal models of

P it is not true in all weakly minimal models of P. Therefore:

p° FEwmin AV B and p° Fmin AV B andyet p° FEwmin AV -B.

20

As a result:
P! = Up(P% = PPU{Days, D-av-p} but Py = U%(P°) = P°U{Days},

where by the index “w” we indicate the fact that we are using WGCW A instead of GCW A
in the definition of static expansions and static completion. Now, from Lemma 2.1 it follows
that P! |= =D app and therefore P! = =Dy vV =Dpy. Consequently:

P! Emin —C andthus P’=pPu {DavB, D-av-B, D-c},
It is easy to see that P2 = Up(P?) is a fized point and therefore:
P =PU{DavB,D-av-B, D-c}
On the other hand, it is easy to verify that P = W%(PL) is a fized point and therefore:
PY =PU{Days}.

We conclude that under GCW A we can derive that both AV B and —-AV —B as well as -C
hold by default, whereas W GCW A only allows us to derive AV B.

7.2 Adding Explicit or “Classical” Negation

As we already know, the negation operator not F' used in logic programs does not represent
the classical negation, but rather the so called negation by default. Gelfond and Lifschitz
pointed out [GL90] that in logic programming, as well as in other areas of non-monotonic
reasoning, it is often useful to use both the negation by default and classical negation. They
developed a semantics for such programs, based on the stable model semantics. As pointed
out by many researchers, the form of negation proposed by Gelfond and Lifschitz, which
we will denote here by —A, does not really represent true classical negation but rather its
weaker form which does not require the law of excluded middle AV —A. Following Pereira
et.al. [PAA91] we will call —A ezplicit negation.

For example, the static semantics of the program P:

A C B
A C -B,
where — B represents true classical negation, implies that A is true, because in classical logic
AV —A always holds. On the other hand, according to Gelfond-Lifschitz’ semantics, the
program P':
A C B
A C -B,
where — B represents ezplicit negation, does not imply A, but rather not A instead.
One can easily extend our approach to the broader class of programs which permit the

use of explicit negation and thus allow three types of negation, namely:

21

e (Classical negation —F;
e Negation by default D_p;

e Explicit negation —A.

In order to use explicit negation it suffices to add to the original language £ new objective
propositional symbols “—A”, with the intended meaning that — A is the “explicit negation

of A”, and assume the ezplicit negation ariom schema:
AN—AD false or,equivalently, —A D - A (10)

for any objective proposition A in the original language £. Observe that, as opposed to

true classical negation —, the law of excluded middle A V —A is not assumed.

As pointed out by Bob Kowalski, the proposition A may describe the property of being
“good” while proposition —A describes the property of being “bad”. The explicit negation
axiom states that things cannot be both “good” and “bad”. We do not assume, however,

that things must always be either “good” or “bad”.

The resulting framework provides a strict generalization of Gelfond-Lifschitz’ approach.
In particular, when applied to normal logic programs with explicit negation, one easily
proves a one-to-one correspondence between static expansions and stable models which

directly generalizes Corollary 5.3:

Corollary 7.1 Let P be an arbitrary normal program with explicit negation. There is a
one-to-one correspondence between stable models M of P (in the sense of [GL90]) and those
static expansions P of P that satisfy the condition that:

Doa€P or D.4€P, forany(objective)atom A

i.e., those expansions that completely decide the default status of all objective literals.

This approach also eliminates some problems (pointed out by Pereira et.al. [PAA92]),

in the definition of partial stable models of programs with explicit negation given in [Prz90]:

Example 7.2 [PAA92] Consider the program P:

—A
A <+ notB
B + notA
or, after translation:
—-A C
A C D-op
B C D-a

22

where —A denotes explicit negation. Let P* = P. From the explicit negation azioms (10)
it follows that P° = =A. Thus P° =min ~A and therefore

P! = P'U{D_4}.
This proves that P! =i B and therefore one can easily verify that:
P=P?=P'U{D-4, Dg}

1s the static completion of P, as intended.

7.3 Adding More Axioms

One can easily add other axioms or inference rules in order to tailor the formalism of static
expansions to the needs of specific application domains. For example, by assuming the

Disjunctive Distributive Aziom Schema:
Drvg = Drp V Dg

one can ensure that the default operator is distributive with respect to disjunctions. In some
application domains, e.g., in disjunctive deductive databases, such an assumption may be

very natural. It would ensure, for example, that from the database P:

AV B
C C D-a
C C D-B

one can deduce that C is true. Indeed, since P |=pin AV B and P |=pin 7A V —B we have
P EDayp and P |= D-_ay-p- In view of the above distributive axiom, we then infer that
P ED_4VD_p and therefore P = C and P = D¢.

The fact that the definition of static expansions can be easily modified to accommodate

various domain-specific requirements underlines the flexibility of the proposed framework.

7.4 Combining Static and Stable Expansions

One can combine static and stable expansions using the following extended definition of

static expansions which results in an even more expressive semantic framework:

Definition 7.1 A theory & is called an extended static expansion of a program P if it

satisfies the following fixed-point equation:

SIPU{DFZS |:min F}U{EFgle} U{—LCFSI#F}

23

Here by Lr we denote the epistemic belief operator as defined in Moore’s autoepistemic
logic AEL [Moo85]. Observe that the second part of the definition is identical to the
definition of stable erpansions while the first part coincides with the definition of static
expansions. Naturally, we assume now that the extended language L*is now closed under

the nested use of both operators Dr and Lp.

The resulting non-monotonic framework strictly extends several non-monotonic for-
malisms, including circumscription, autoepistemic logic, various semantics proposed for logic
programs and deductive databases (stable semantics, well-founded semantics and stationary

semantics) as well as Gelfond’s epistemic specifications. It is studied in detail in [Prz93].

7.5 Choosing a Different Translation of Negation by Default

One could translate negation by default not F' by using a weaker formula

I
<

€

not ' = -Dp,

d
instead of not F 2 D, F, thus giving it the intended meaning of “F' is not true by default”.

<

This would lead to the translation of the informal program clauses (1) into formulae:
AV..VA CBA...ABy A =Dg, A...N=Dg,

of propositional logic. For normal programs the resulting semantics is essentially the same

but for disjunctive programs it is generally stronger than the static semantics.

8 Concluding Remarks

The class of static expansions presents a semantic framework which bases the notion of
negation by default not F' on the simple idea of building a completion £ of a logic program
P in which a formula F' is satisfied by default, i.e., Dp € &£, if and only if F' is true in all
minimal models of £ and subsequently interpreting not F' to mean D_g , i.e., = F is true by
default. Although similar to the notion of stable autoepistemic expansions [Moo85], it uses
satisfaction by default Dy instead of logical implication Lr and does not explicitly specify

when D is supposed to be false.

Static expansions extend to disjunctive programs the class of stationary or partial stable
models of normal, non-disjunctive programs and thus generalize both the stable and well-
founded models. They also extend the minimal model semantics of positive disjunctive

programs.

Static expansions differ significantly from the class of stationary expansions introduced

earlier in [Prz91b, Prz91d]. The definition of stationary expansions was based on the idea

24

of building a completion £ of a logic program P in which negation by default Not F' of a
formula F holds if F is false in all minimal models of £ and —Not F' holds if F' is true in
all minimal models of £. As a result, it blurred the essential distinction between —Not F'
and Not—F leading to some non intuitive results. It also assumed distributivity of Not
with respect to disjunctions, i.e., Not(FV G) = Not F V Not G , thus making it impossible
to differentiate between “disjunction of defaults” and “default disjunctions”, like those in
Example 6.3. Moreover, it used the so called “distributive inference rule” which is no longer

assumed in static expansions.

Although, for normal programs, the static, the stationary and the well-founded seman-
tics all coincide (see Theorem 5.1), the notions of a static and a stationary expansion differ
considerably in the class of disjunctive programs, and, consequently, the static and sta-
tionary semantics of disjunctive programs are significantly different. Static expansions are
also defined for a much broader class of logic programs and they constitute a special case
of a more general non-monotonic framework introduced in [Prz93] which generalizes sev-
eral formalizations of non-monotonic reasoning, including Gelfond’s epistemic specifications
[Gel92].

The proposed approach also differs significantly from the other major semantics proposed

recently for disjunctive logic programs and databases (see [LMR92]). In particular:

Generalized well-founded semantics, introduced by Minker et. al. [BLM90, BLM89],
extends the minimal model semantics of disjunctive programs but it does not extend

the well-founded or the stationary or stable models of normal programs.

Extended well-founded semantics, introduced by Ross [Ros89], extends the well-founded
semantics of normal programs and the minimal model semantics of disjunctive pro-
grams. It does mot, however, extend the stationary or stable models of normal pro-

grams.

Disjunctive (partial) stable semantics, introduced in [Prz91c, GL90], extends both
classes of stable and stationary models of normal programs as well as the minimal
model semantics of disjunctive programs but it is defined only for a fairly restricted

subclass of the class of disjunctive programs.

Similar comments apply to the semantics introduced recently by Dix [Dix92]. As it is the
case with most semantics for disjunctive programs, the static semantics is not cumulative
(see [Dix91]).

Acknowledgments

The author is grateful to Roland Bol, Juergen Dix, Michael Gelfond, Vladimir Lifschitz,

Louis Pereira, Halina Przymusinska, Mirek Truszczynski and D.S. Warren for their helpful

25

comments.

References

[ABW88] K. Apt, H. Blair, and A. Walker. Towards a theory of declarative knowledge. In

J. Minker, editor, Foundations of Deductive Databases and Logic Programming,
pages 89-142, Morgan Kaufmann, Los Altos, CA., 1988.

[BLM89] C. Baral, J. Lobo, and J. Minker. Generalized Disjunctive Well-Founded Seman-

tics for Logic Programs: Declarative Semantics. Research report UMIACS TR
90-39, CS TR 2436, University of Maryland, College Park, Maryland 20742, 1989.

[BLM90] C. Baral, J. Lobo, and J. Minker. Generalized well-founded semantics for logic

[Dix91]

[Dix92]

[Gel92]

[GL8S]

[GL90]

[GPP8Y)

programs. In 10th International Conference on Automated Deduction, West Ger-

many, 1990.

J. Dix. Classifying semantics of logic programs. In A. Nerode, W. Marek, and
V.S. Subrahmanian, editors, Proceedings of the First International Workshop on
Logic Programming and Non-monotonic Reasoning, Washington, D.C., July 1991,
pages 166-180, MIT Press, Cambridge, Mass., 1991.

Jirgen Dix. Classifying Semantics of Disjunctive Logic Programs. In K. Apt,
editor, LOGIC PROGRAMMING: Proceedings of the 1992 Joint International
Conference and Symposium, pages 798-812, MIT Press, November 1992.

M. Gelfond. Logic Programming and Reasoning with Incomplete Information.

Technical report, University of Texas at El Paso, 1992.

M. Gelfond and V. Lifschitz. The stable model semantics for logic programming. In
R. Kowalski and K. Bowen, editors, Proceedings of the Fifth Logic Programming
Symposium, pages 1070-1080, Association for Logic Programming, MIT Press,
Cambridge, Mass., 1988.

M. Gelfond and V. Lifschitz. Logic programs with classical negation. In Proceedings
of the Seventh International Logic Programming Conference, Jerusalem, Israel,
pages 579-597, Association for Logic Programming, MIT Press, Cambridge, Mass.,
1990.

M. Gelfond, H. Przymusinska, and T. Przymusinski. On the relationship between
circumscription and negation as failure. Journal of Artificial Intelligence, 38:75—
94, 1989.

26

[HTTS87] J. Horty, R. Thomason, and D. Touretzky. A skeptical theory of inheritance in

[Lif86]

non-monotonic semantic nets. In Proceedings AAAI-87, page , American Associ-
ation for Artificial Intelligence, Morgan Kaufmann, Los Altos, CA, 1987.

V. Lifschitz. Pointwise circumscription: a preliminary report. In Proceedings
AAAI-86, pages 406-410, American Association for Artificial Intelligence, Morgan
Kaufmann, Los Altos, CA, 1986.

[LMR92] J. Lobo, J. Minker, and A. Rajasekar. Foundations of Disjunctive Logic Program-

[McC80]

[Min82]

[Moo85]

[PAA9]]

[PAA92]

[PP90]

[Prz88]

[Prz90]

[Prz91al

ming. MIT Press, Cambridge, Massachusetts, 1992.

J. McCarthy. Circumscription— a form of non-monotonic reasoning. Journal of
Artificial Intelligence, 13:27-39, 1980.

J. Minker. On indefinite data bases and the closed world assumption. In Proc.
6-th Conference on Automated Deduction, pages 292-308, Springer Verlag, New
York, 1982.

R.C. Moore. Semantic considerations on non-monotonic logic. Journal of Artificial
Intelligence, 25:75-94, 1985.

L.M. Pereira, J.A. Aparicio, and J.J. Alferes. Non-monotonic reasoning with well-
founded semantics. In Proceedings of the Eight International Logic Programming
Conference, Paris, France, pages 475489, Association for Logic Programming,
MIT Press, Cambridge, Mass., 1991.

L.M. Pereira, J.J. Alferes, and J.A. Aparicio. Well Founded Semantics with Ez-
plicit Negation and Default Theory. Research report, New University of Lisbon,
1992.

H. Przymusinska and T. C. Przymusinski. Semantic issues in deductive databases
and logic programs. In R. Banerji, editor, Formal Techniques in Artificial Intelli-
gence, pages 321-367, North-Holland, Amsterdam, 1990.

T. C. Przymusinski. On the declarative semantics of stratified deductive databases
and logic programs. In J. Minker, editor, Foundations of Deductive Databases and

Logic Programming, pages 193-216, Morgan Kaufmann, Los Altos, CA., 1988.

T. C. Przymusinski. The well-founded semantics coincides with the three-valued
stable semantics. Fundamenta Informaticae, 13(4):445-464, 1990.

T. C. Przymusinski. Autoepistemic logics of closed beliefs and logic programming.
In A. Nerode, W. Marek, and V.S. Subrahmanian, editors, Proceedings of the First
International Workshop on Logic Programming and Non-monotonic Reasoning,
Washington, D.C., July 1991, pages 3-20, MIT Press, Cambridge, Mass., 1991.

27

[Prz91b]

[Prz91c]

[Prz91d]

[Prz93]

T. C. Przymusinski. Semantics of disjunctive logic programs and deductive
databases. In C. Delobel, M. Kifer, and Y. Masunaga, editors, Proceedings of
the Second International Conference on Deductive and Object-Oriented Databases
DOOD’81, pages 85-107, Springer Verlag, Munich, Germany, 1991.

T. C. Przymusinski. Stable semantics for disjunctive programs. New Generation
Computing Journal, 9:401-424, 1991. (Extended abstract appeared in: Extended
stable semantics for normal and disjunctive logic programs. Proceedings of the 7-
th International Logic Programming Conference, Jerusalem, pages 459-477, 1990.
MIT Press.).

T. C. Przymusinski. Well-founded completions of logic programs. In Proceedings of
the Eight International Logic Programming Conference, Paris, France, pages 726—
744, Association for Logic Programming, MIT Press, Cambridge, Mass., 1991.

T. C. Przymusinski. Epistemic Logic of Defaults. Research report, University of
California at Riverside, 1993.

[RLM89] A. Rajasekar, J. Lobo, and J. Minker. Weak generalized closed world assumption.

[Ros89]

[RT8S]

[VG8Y]

Journal of Automated Reasoning, 5:293-307, 1989.

K. Ross. The well founded semantics for disjunctive logic programs. In Proceedings
of the First International Conference on Deductive and Object Oriented Databases,
pages 352-369, 1989.

K. Ross and R. Topor. Inferring negative information from disjunctive databases.
Journal of Automated Reasoning, 4:397-424, 1988.

A. Van Gelder. Negation as failure using tight derivations for general logic pro-
grams. Journal of Logic Programming, 6(1):109-133, 1989. Preliminary versions
appeared in Third IEEE Symposium Logic Programming (1986), and Foundations
of Deductive Databases and Logic Programming, J. Minker, ed., Morgan Kauf-
mann, 1988.

[VGRS90] A. Van Gelder, K. A. Ross, and J. S. Schlipf. The well-founded semantics for

[YYar]

general logic programs. Journal of the ACM, 1990. (to appear). Preliminary
abstract appeared in Seventh ACM Symposium on Principles of Database Systems,
March 1988, pp. 221-230.

L. Yuan and J. You. Autoepistemic circumscription and logic programming. Tech-
nical Report TR92-18, Dept. of Computing Science, University of Alberta, 1992.

Journal of Automated Reasoning, (to appear).

28

A Appendix

A.1 Proof of Theorem 5.1

We first recall the characterization of stationary models of normal programs [Prz90] given
in [Prz9lc]. It uses the Gelfond Lifschitz quotient operator - [GL88] which assigns to
any normal logic program P and any interpretation M a positive normal logic program %
obtained by deleting all clauses containing negative premises not A such that A is true in

M and removing all negative premises not A from the remaining clauses.

Theorem A.1 (Stationary Models) [Prz91c] Suppose that P is a normal logic program
and M is an arbitrary partial interpretation. Define M™ (respectively, M~) to be the total

interpretation obtained by making all undefined atoms in M true (respectively, false).

An interpretation M is a stationary model of P if and only if M = Mpos U Mpeq, where
Mpos (respectively, Mpyeg) is the set of positive (respectively, negative) literals in the least
model of the program % (respectively, %).

We now prove Theorem 5.1.

(=) Suppose that M = Mpy, U M4 is a stationary model of P and let:

P=PU{Dy: L€ M}.

We will show that P is a static expansion of P. By Theorem 4.2, it suffices to show that
P Fmin L, for every L € M. Observe that if A € Mp,s then Dy € P and therefore, by
Lemma, 2.1, “D_4 € P. Similarly, if ~A € My, then D-4 € P and therefore, by Lemma
2.1, =Dy € P. This means that a negative premise of the form D_ 4 in a program clause
is always true in any model N of Pif -A € M and always false in any model N of Pif
Ae M.

Let N be any minimal model of P. Since P contains, as a subtheory, the program
%, all the positive atoms in the least model of % must belong to N. Consequently,
MPos c N.

Similarly, since the set of all satisfiable clauses in P is contained in the program %,
P

77= must also belong to N. Consequently,
Mpey € N. This shows that p Fmin L, for every L € M and thus completes the proof of

the first part.

all the negative literals in the least model of

(<=) The proof in the opposite direction is completely analogous. O

29

