Competitive Analysis of Randomized Paging Algorithms

Marek Chrobak* John Noga†

UCR-CS-96-1

*Department of Computer Science, University of California, Riverside, CA 92521. Email: marel@cs.ucr.edu. Research supported by the NSF under Grant CCR-9503498.

†Department of Mathematics, University of California, Riverside, CA 92521. Email: jnoga@cs.ucr.edu. Research supported by the NSF under Grant CCR-9503498.
Abstract

The paging problem is defined as follows: We are given a two-level memory system, in which
one level is a fast memory, called cache, capable of holding k items, and the second level is an
unbounded but slow memory. At each given time step, a request to an item is issued. Given
a request to an item p, a miss occurs if p is not present in the fast memory. In response to a
miss, we need to choose an item q in the cache and replace it by p. The choice of q needs to be
made on-line, without the knowledge of future requests. Our goal is to design a replacement
strategy with a small number of misses.

In this paper we use the competitive analysis to study online randomized algorithms for
paging. Our goal is to show how the concept of work functions, used previously mostly for
the analysis of deterministic algorithms, can also be applied, in a systematic fashion, to the
randomized case. We present two results: We first show that the competitiveness of the marking
algorithm is exactly $2H_k - 1$. Previously, it was known to be between H_k and $2H_k$. Our second
result is a new, H_k-competitive algorithm for paging. Our algorithm, as well as its analysis, is
simpler than the known algorithm by McGeoch and Sleator. Another advantage of our method
is that it can be implemented with complexity bounds independent of the number of past
requests: $O(k^2 \log k)$ memory and time $O(k^2)$ per request.
1 Introduction

The paging problem is defined as follows: We are given a two-level memory system, in which one level is a fast memory (that we refer to as cache) capable of holding \(k \) items, and the second level is an unbounded but slow memory. At each given time step, a request to an item is issued. Given a request to an item \(p \), a miss occurs if \(p \) is not present in the fast memory. In response to a miss, we need to move \(p \) from the slow memory into the cache. In order to make room for \(p \), one of the items residing currently in the cache, say \(q \), needs to be evicted. The choice of \(q \) is made on-line, before the next request is announced, and a strategy for making such choices will be referred to as an on-line algorithm.

The cost function associated with the paging problem is the number of misses. In general, no on-line algorithm can always achieve a minimum cost on all request sequences. Therefore, in order to evaluate various on-line algorithms, one needs to design a performance measure that takes into account the on-line nature of the problem. In this paper we use the competitive approach: A given on-line algorithm is said to be \(c \)-competitive, if on each request sequence its cost is bounded (asymptotically) by \(c \) times the optimal cost for this sequence.

Paging is a classical online problem and has been extensively studied in the literature on competitive on-line algorithms. It can be viewed as a special case of the \(k \)-server problem (see, for example, [10, 12, 2]), in which all distances are equal to one. In the deterministic case, it is known that the well-known LRU (least recently used) strategy is \(k \)-competitive, and that no better competitiveness is possible (see [15]).

In this paper we concentrate on the randomized version of this problem. It is quite easy to show (see [6]) that no randomized online algorithm can be better than \(H_k \)-competitive, where \(H_k \) is the \(k \)-th harmonic number. Two algorithms have been proposed for this problem in the past. Fiat et al [6] gave a simple marking algorithm (called MARK) and proved that it is \(2H_k \)-competitive. Subsequently, McGeoch and Sleator [13] presented another algorithm, called PARTITION, and proved that it is \(H_k \)-competitive, and thus optimal.

Work functions have played an important role in the analysis of online problems. However, up until recently, this technique has been used mostly in the analysis of deterministic algorithms. The only example that we are aware of, where work functions have been applied to the randomized case is [5], where some optimal randomized algorithms for the page migration problem were developed based on this technique. One of our goals was to show how work functions can also be applied in the competitive analysis of randomized algorithms for the paging problem. A work function approach usually starts with some characterization of work functions for a given problem. Then, the properties of work functions are used to design and analyze an online algorithm. Koutsoupias and Papadimitriou [9] presented a simple, elegant characterization of work functions for paging. In an earlier work, McGeoch and Sleator in [13] gave an equivalent characterization of the behavior
of an optimal algorithm, although their formulation did not explicitly involve work functions.

Analysis of Mark. Algorithm Mark of [6], even though not optimal, is of its own interest. It is simpler, faster and more space-efficient than Partition. Mark can be implemented with \(O(k) \) memory and in \(O(1) \) time per request, while Partition may need as much as \(\Omega(n) \) memory, where \(n \) is the number of past requests. Fiat et al [6] provided an upper bound of \(2H_k \) on the competitiveness of Mark. The trivial lower bound is \(H_k \). Thus it would be interesting to know what is the exact competitiveness of this algorithm. Our first result is the proof that the exact competitiveness constant of Mark is \(2H_k - 1 \). Since \(H_k \) is such a slow growing function, it shows that for many small values of \(k \), Mark is considerably better than previously thought. For example, for \(k = 10 \), it improves the constant from \(2H_{10} \approx 5.858 \) to \(\approx 4.858 \). (The optimal constant is \(H_{10} \approx 2.929 \).)

A new optimal algorithm. The result of McGeoch and Sleator [13] gives the tight bound on the competitive constant in the randomized case. However, algorithm Partition from [13] is somewhat counterintuitive, and both the correctness and competitiveness proofs are rather difficult. In the second part of the paper, we present an alternative \(H_k \)-competitive algorithm for paging called Equitable, that we believe to be simpler and more natural. In fact, our method follows quite naturally from the concepts of work functions, stable algorithms, and some basic game-theoretic principles. We believe that those ideas can be extended to other online problems. We also show that our method can be implemented in space \(O(k^2 \log k) \) and time \(O(k^2) \) per request. Unlike in [13], these complexity bounds are independent of the length of the request sequence.

2 Preliminaries

Throughout the paper, by \(k \) we denote the cache size. By a *cache configuration*, or simply *configuration*, we will mean a \(k \)-tuple of items representing the cache content. We will assume that the initial configuration is fixed, and we call it \(X_0 \). As explained in the introduction, an online paging algorithm \(\mathcal{A} \) needs to respond to each request \(p \) before the next request is issued. If a miss occurs, that is, if \(p \) is not in the cache, \(\mathcal{A} \) must decide which item \(q \) should be evicted from the cache to make room for \(p \). Each miss has a unit cost.

Mathematically, it is convenient to define an online algorithm as a function \(\mathcal{A}(\varrho) \) that to a given request sequence \(\varrho \) assigns the configuration after serving \(\varrho \). In order to ensure that the requests are satisfied, if \(r \) is the last request in \(\varrho \) then we require that \(r \in \mathcal{A}(\varrho) \). Note that this definition allows \(\mathcal{A} \) to swap an arbitrary number of items in the cache at each step, whether a miss occurred or not. However, we will charge \(\mathcal{A} \) a cost of 1 for each such swap. It is easy to see that in this case, without loss of generality, \(\mathcal{A} \) will never bring an item into the cache unless it has been requested.
Denote by $cost_A(\varrho)$ the cost of A on request sequence ϱ, and by $opt(\varrho)$ the optimal cost on ϱ. We will say that A is c-competitive if there is a constant a such that on each request sequence ϱ

$$cost_A(\varrho) \leq c \cdot opt(\varrho) + a.$$

In our algorithms the additive constant a will be zero. The competitive constant of A is the minimum c for which A is c-competitive. (In our applications this minimum is well-defined.)

There are several ways to define a randomized algorithm. One can define a randomized algorithm as a probability distribution on the set of all deterministic algorithms for a given problem. Another way is to view a randomized algorithm as an algorithm that at every step chooses its move from a probability distribution on the set of possible moves. In the theory of multi-stage games these two approaches are sometimes called, respectively, mixed strategies and behavior strategies (see, for example, [11]). The definitions of cost and competitiveness extend naturally to randomized algorithms, independently of which of the two above definitions is being used. If A is a randomized algorithm then $cost_A(\varrho)$ denotes the expected cost of A on ϱ, and inequality (1) remains unchanged. It is quite easy to show that these approaches are equivalent, in the sense that an algorithm of each type can be transformed into one of the other type without increasing its (expected) cost on any request sequence.

Yet another way is to consider an algorithm that chooses, deterministically, its probability distribution after each request. In that case $A(\varrho)$ is a probability distribution of A on the set of all possible configurations. We call it a distribution-based algorithm. The cost of a move can be defined by a so-called transport distance between the distributions. It can be shown that this approach is equivalent to the other two (see [3, 5]).

Algorithm MARK is defined as a behavior algorithm, while our H_k-competitive algorithm EQUITABLE is easier to define using the distribution-based approach. However, for the sake of completeness and for cost estimation, we also show how to “implement” EQUITABLE as a behavior algorithm.

When analyzing a given problem for competitiveness it is often necessary to know the optimal cost for the given request sequence. A work function is a function from the set of possible configurations to real numbers which gives the optimal cost to serve the requests and ending in a particular configuration. Specifically, the work function ω associated with requests ϱ is defined as follows: $\omega(X)$ is the minimum cost of servicing ϱ, starting from the initial configuration X_0 and ending in X. Note that, for convenience, in this definition we do not insist that the last request r belongs to X. In such case, if $r \notin X$, then we will take $\omega(X) = 1 + \min_{x \in X} \omega(X + r - x)$. In other words, we allow an optimal algorithm to swap r out of the cache after the request has been satisfied and before the next request was issued. The optimal cost of servicing a request sequence ending at a work function ω is simply $\min(\omega)$.

Suppose that the current work function is ω and r is the new request. What is the new work
function, after serving \(r \)? Denote this new, updated, work function by \(\omega \land r \). It is straightforward to see that this function is

\[
\omega \land r(X) = \begin{cases}
\omega(X) & \text{if } r \in X \\
1 + \min_{x \in X} \omega(X + r - x) & \text{if } r \notin X
\end{cases}
\]

With each work function \(\omega \) we can associate an offset function \(\omega - \min(\omega) \). Instead of keeping track of work functions, it is more convenient to deal with offset functions. If \(\omega \) is a current offset function, then by \(\omega^r \) we will denote the offset function after request \(r \), that is \(\omega^r = \omega \land r - \min(\omega \land r) \). The value \(\min(\omega \land r) \) is the optimal cost associated with this move.

Let \(K \) be a set of configurations and \(\omega \) a work function. We say that \(\omega \) is coned-up from \(K \), if for each configuration \(X \) there is \(Y \in K \) such that \(\omega(X) = \omega(Y) + |X - Y| \). In other words, the value of \(\omega \) on all configurations is uniquely determined by its values in \(K \). If \(K \) is a singleton, \(K = \{ X \} \), then we call \(\omega \) a cone on \(X \).

Potential argument. In order to prove competitiveness of a given algorithm \(\mathcal{A} \), we will use amortized analysis. A potential \(\Phi \) is a function that to a given offset function and a configuration of \(\mathcal{A} \) assigns a real number. (To simplify notation, throughout the paper we will omit the function arguments when defining potentials.) We consider each move separately. Each move is described by a current offset function \(\omega \), a configuration of \(\mathcal{A} \), and a request \(r \). Denote by \(\Delta \text{cost}_\mathcal{A} \), \(\Delta \text{opt} \) and \(\Delta \Phi \), the cost of \(\mathcal{A} \), the optimal cost, and the change of the potential in this move. Our goal is to show that

\[
\Delta \text{cost}_\mathcal{A} + \Delta \Phi \leq c \cdot \Delta \text{opt} \tag{2}
\]

Inequality (2) implies \(c \)-competitiveness of \(\mathcal{A} \) by simple summation over the whole request sequence. Similar method works for randomized algorithms as well, the only difference being that the potential now depends on the current offset function and the distribution of \(\mathcal{A} \), and \(\Delta \text{cost}_\mathcal{A} \) is the expected cost of \(\mathcal{A} \) in the given move.

Characterization of work functions. Koutsoupias and Papadimitriou [9] gave the following elegant characterization of the work functions for the paging problem with the cache of size \(k \).

Lemma 1 Let \(\omega \) be a current offset function, and \(r \) be the last request. Then there is a sequence of sets \(L_1, L_2, \ldots, L_k \), with \(L_1 = \{ r \} \), such that (a) \(\omega(X) = 0 \) for each \(X \) satisfying \(|X \cap \bigcup_{i \leq j} L_i| \geq j \) for all \(1 \leq j \leq k \), and (b) \(\omega \) is coned up on other configurations.

The sets \(L_i \) are called the layers of \(\omega \). Note that the above representation is not always unique. Configurations \(X \) satisfying (a) will be called valid, and the set of valid configurations will be denoted by \(V(\omega) \).
The set $S(\omega) = \bigcup_{i \leq k} L_i$ will be called the support of ω. By Lemma 1, we can identify ω with its sequence of layers, and write $\omega = (L_1|L_2|\ldots|L_k)$. We always have $|L_1| = 1$. Let i be the largest number for which L_1,\ldots,L_i are singletons. All items in $L_1 \cup \ldots \cup L_i$ are called revealed. We can assume that an optimal algorithm has all revealed items in the cache, since any optimal algorithm can be modified to one with this property without raising its cost. By $N(\omega)$ we denote the set of non-revealed items in $S(\omega)$.

Koutsoupias and Papadimitriou [9] also give a method for updating the layers after a request. Let $\omega = (L_1|\ldots|L_k)$. Suppose that r is a new request. Then

$$\omega' = \begin{cases}
(r|L_2|\ldots|L_{j-1}|L_j \cup L_{j+1} - r|L_{j+2}|\ldots|L_k) & \text{if } r \in L_j \text{ and } j < k \\
(r|L_2|\ldots|L_{k-1}) & \text{if } r \in L_k \\
(r|L_1 \cup L_2|L_3|\ldots|L_k) & \text{if } r \notin S(\omega)
\end{cases} \quad (3)$$

To simplify notation, in the equations above and throughout the paper, we will often omit braces in the notation for sets. We will also write $X + x$ (or $X - x$) when adding an item x to a set X (respectively, removing x from X). If $Z \subseteq X$ for some $X \in V(\omega)$, then we will also use notation ω^Z for ω^{z_1,\ldots,z_p}, where z_1,\ldots,z_p is an arbitrary permutation of Z. (It is easy to see that this is well-defined.)

Example: Let $k = 3$, and suppose that originally items a, b, and c are in the cache. So the initial configuration is $X_0 = \{a,b,c\}$ and the initial work function is the cone on X_0, represented by $(a|b|c)$. Consider the request sequence d, e, b. The corresponding sequence of offset functions is

$$(a|b|c) \rightarrow (d|a,b|c) \rightarrow (e|a,b,d|c) \rightarrow (b|a,c,d).$$

The optimal cost of this sequence is 2. ♦

3 Analysis of the Marking Algorithm

Algorithm **MARK** maintains up to k marks. The marked items are always in the cache. Suppose that an item p is requested. If p is in the cache, we only mark it, unless it is already marked. If p is not in the cache, we first check if all items are already marked, and if so, we unmark them all. Then we mark p and swap it with a random unmarked item in the cache.

For the purpose of the analysis, we will use two different marks: *amber* and *blue*. The amber marks are the same as the ones used by **MARK**. The blue marks are given to the amber items when they are unmarked by **MARK**. These marks are erased at the beginning of a phase, when a new set of amber marks is changed to blue. For convenience, we will refer to non-marked items as *white* items.

Let a and b denote the numbers of amber and blue items. The ranges of a, b are: $1 \leq a \leq k$,

5
2 \leq b \leq k \text{ or } b = 0, \text{ and } a + b \geq k. \text{ Also, } a = k \text{ implies } b = 0, \text{ } a = 1 \text{ implies } b = k, \text{ and } b > 1 \text{ implies } a + b > k. \text{ The following fact follows directly from the definition of } \text{MARK.}

Fact 1 The amber items are in the cache for sure. Each blue item is in the cache with probability \((k - a)/b\).

Lemma 2 The following invariant is preserved by \text{MARK:} Let \(\omega = (L_1|\ldots|L_k)\) be the current offset function, and denote by \(L_{k+1}\) the set of items outside \(S(\omega)\). Then

(a) If \(L_i\) contains an amber item and \(i > 1\), then \(L_{i-1}\) contains only amber items;

(b) If \(L_i\) contains a blue item, then \(L_{i-1}\) contains only amber or blue items.

Say that \(x \in L_i\) occurs before \(y \in L_j\) if \(i < j\). An alternative way to state the above lemma is that a blue item cannot occur before an amber item, and a white item cannot occur before a blue item.

Proof: The proof is by induction on the number of requests. The lemma holds trivially at the beginning, when our state is a cone on a set \(X_0\) and all items in \(X_0\) are amber. For the inductive step, assume that lemma holds for \(\omega = (L_1|L_2|\ldots|L_k)\), let \(r \in L_j\) and consider \(\omega^r\). We can think about the rules (3) as being combinations of the following operations: (i) joining two consecutive layers, (ii) removing an item from a layer, and (iii) creating a new first layer colored amber. All these operations preserve invariant (a) and (b). \(\square\)

By the above lemma, each state of the computation is uniquely characterized by a triple \((\omega, a, b)\) where \(\omega\) is the current offset function and \(a, b\) are the numbers of amber and blue items.

Theorem 1 The competitive constant of algorithm \text{MARK} is \(2H_k - 1\).

Proof: Lower Bound. We will show a cycle in which the optimal cost is 1, and the cost to \text{MARK} is \(2H_k - 1\).

Start from a state in which the offset function is a cone on \(X = \{x_1, \ldots, x_k\}\), but \text{MARK} has 1 amber mark on \(x_1\), the last request. The remaining \(k - 1\) items are uniformly distributed among \(k\) blue items, including \(x_2, \ldots, x_k\) and one additional item \(y \notin X\). Request a new item \(x_0 \notin X \cup \{y\}\). Then \(\omega^x = (x_0|x_1,x_2|\ldots|x_k)\), and \text{MARK} has now two amber marks on \(x_0, x_1\) and the same set of \(k\) blue marks as before. From now on we request \(x_2, \ldots, x_{k-1}\), and we reach an offset function \((x_{k-1}|\ldots|x_2|x_0|x_1, x_k)\), in which \text{MARK} will have \(k\) amber marks on \(x_0, \ldots, x_{k-1}\). Then request \(x_k\), which is now white, going back to the state identical to the one we started from. The optimal cost is 1, and the cost to \text{MARK} is

\[
1 + \frac{2}{k} + \frac{2}{k-1} + \ldots + \frac{2}{3} + 1 = 2H_k - 1.
\]

To complete the proof it remains to show that the state from which we started the cycle can be reached from an initial state. We leave it as an exercise.
Upper Bound. Now we will prove that MARK is \((2H_k - 1)\)-competitive. Let \(\omega\) be a given offset function. By \(a, b\) we denote the numbers of amber and blue items, by \(\beta\) the number of layers which contain blue items and no white items, and \(\gamma\) the number of layers that contain white items. Define

\[
\Psi_1 = \gamma + \beta + (a + \beta + \gamma - k)(H_k - H_{a+\beta+\gamma-k}) \\
\Psi_2 = \gamma + (a + b + \gamma - k)(H_k - H_{a+b+\gamma-k}) + (a + \beta + \gamma - k)(1 + H_k - H_{a+\beta+\gamma-k})
\]

We use the following potential function:

\[
\Phi = \begin{cases}
\Psi_1 & \text{if } a + \gamma \geq k \\
\Psi_2 & \text{if } a + \gamma \leq k
\end{cases}
\]

Note that the above cases are not disjoint, but if \(a + \gamma = k\) then \(\Psi_1 = \Psi_2\). Fix \(\omega\) and a request \(r\). In order to prove that MARK is \((2H_k - 1)\)-competitive, it is sufficient to show inequality (2), that is

\[
\Delta \text{cost} + \Delta \Phi \leq (2H_k - 1) \Delta \text{opt}
\]

where \(\Delta \text{cost}\) is MARK’s cost in this move, \(\Delta \Phi\) is the potential change, and \(\Delta \text{opt}\) is the cost of the optimal algorithm. Let \(a', b', \beta', \gamma', \Psi_i', \Phi'\) be the new values of \(a, b, \beta, \gamma, \Psi\) and \(\Phi\), respectively. We show inequality (4) by considering a number of cases.

The case when \(a = k - 1\) and \(r\) is blue or white is special, since it involves increasing \(a\) and recoloring. In order to simplify the proof, we will deal with it as follows: Subdivide it into two stages: (i) serving the request and increasing \(a\), and (ii) unmarking the blue vertices. Stage (i) can now be considered together with all other values of \(a = 1, \ldots, k - 2\). In stage (ii), the values of \(b\) and \(\beta\) change to 0 and \(\gamma\) becomes \(\beta + \gamma\). We call (ii) the unmarking move.

Case A: Unmarking. In this case \(\Delta \text{cost} = \Delta \text{opt} = 0\), so we only need to show that \(\Delta \Phi \leq 0\). We have \(a' = a = k\), implying that \(\Phi = \Psi_1\) and \(\Phi' = \Psi_1'\). Then, from \(b' = b' = 0\) and \(\gamma' = \beta + \gamma\), we get \(\Psi_1' = \Psi_1\).

Case B: \(r\) is amber. By Lemma 2, \(r \in S(\omega)\). In this case \(\Delta \text{cost} = \Delta \text{opt} = 0\), \(a' = a\), and \(b' = b\). We also know that \((\beta', \gamma') = (\beta, \gamma), (\beta - 1, \gamma), \) or \((\beta, \gamma - 1)\). Thus \(\Phi = \Psi_i\) and \(\Phi' = \Psi_i'\) for the same \(i\). Since both \(\Psi_i\) are increasing in \(\beta\) and \(\gamma\), \(\Delta \Phi \leq 0\), as necessary.

Case C: \(r\) blue and \(r \in S(\omega)\). In this case \(\Delta \text{cost} = (a + b - k)/b, \Delta \text{opt} = 0\), and we need to show that \(\Delta \Phi \leq -\Delta \text{cost}\). We also have \(a' = a + 1, b' = b - 1\), and \((\beta', \gamma') = (\beta - 1, \gamma)\) or \((\beta, \gamma - 1)\). Thus \(\Phi = \Psi_i\) and \(\Phi' = \Psi_i'\) for the same \(i\).

We have \(\Delta \Psi_1 = -1 \leq -\Delta \text{cost}\). If \((\beta', \gamma') = (\beta - 1, \gamma)\) then

\[
\Delta \Psi_2 = \frac{a + b + \gamma - k}{b} \leq -\Delta \text{cost}
\]
and if \((\beta', \gamma') = (\beta, \gamma - 1)\) then
\[
\Delta \Psi_2 = \frac{a + b + \gamma - k}{b} - (H_{b-1} - H_{a+b+\gamma-1-k}) \leq -\Delta \text{cost}
\]

Case D: \(r\) is white and \(r \in S(\omega)\). In this case \(\Delta \text{cost} = 1\) and \(\Delta \text{opt} = 0\), so we need to show \(\Delta \Phi \leq -1\). We have two subcases.

If \(a \leq k - 1\) then \(a' = a + 1, b' = b, \beta' = \beta, \gamma' = \gamma - 1\), and \(\Delta \Psi_i = -1\) for each \(i\). Since \(\Phi = \Psi_i\) and \(\Phi' = \Psi_i'\) for the same \(i\), we are done.

If \(a = k\) then \(b = \beta = 0, a' = 1, b' = k, \beta' = k - \gamma, \gamma' = \gamma - 1\), and \(\Delta \Phi = \Psi_2' - \Psi_1 = -1\).

Case E: \(r\) is blue and \(r \notin S(\omega)\). (Thus \(a < k\).) In this case \(\Delta \text{cost} = (a + b - k)/b\), and \(\Delta \text{opt} = 1\), so we need to show that \(\Delta \Phi \leq 2H_k - 1 - (a + b - k)/b\). We also have \(a' = a + 1, b' = b - 1, \beta' = \beta, \gamma = \gamma' = 0\), implying that \(\Phi = \Psi_2, \Phi' = \Psi_2'\), and
\[
\Delta \Phi = \frac{a + b - k}{b} + H_k - H_{a+b+\beta-k} \leq 2H_k - 1 - \frac{a + b - k}{b}
\]

Case F: \(r\) is white and \(r \notin S(\omega)\). In this case \(\Delta \text{cost} = \Delta \text{opt} = 1\), so we need to show that \(\Delta \Phi \leq 2H_k - 2\). We have three subcases.

If \(a \leq k - 1\) then \(a' = a + 1, b' = b, \beta' = \beta\), and \(\gamma' = \gamma\). For \(a + \gamma \geq k\) we have
\[
\Delta \Phi = \Psi_1' - \Psi_1 = H_k - 1 - H_{a+b+\gamma-k} \leq 2H_k - 2,
\]
and for \(a + \gamma < k\) we have
\[
\Delta \Phi = \Psi_2' - \Psi_2 = H_k - H_{a+b+\gamma-k} + H_b - H_{a+b+\gamma-k} - 1 \leq 2H_k - 2.
\]

If \(a = k\) then \(b = 0, a' = 1, b' = k, \beta' = k - 1\), and \(\gamma' = \gamma\). Then
\[
\Delta \Phi = \Psi_2' - \Psi_1 = (\gamma + 1)(H_k - H_{\gamma+1}) - \gamma(H_k - H_\gamma) = H_k - H_\gamma - 1 \leq 2H_k - 2.
\]

completing the proof. □

4 A New Optimal Algorithm

A randomized algorithm is said to be stable if its probability distribution at each step does not depend upon anything other than the current offset function. Thus a stable algorithm can be described as a function \(A(\omega)\) that describes the distribution of \(A\) if the current offset function is \(\omega\). For randomized stable algorithms the potential function will depend only on the current offset function.
PARTITION, the algorithm proposed by McGeoch and Sleator in [13], can be described as distribution-based and stable. Its probability distribution is defined by the following k-round tournament: Initially, each $x \in L_i$ is given rank $i + 1$. At step $i = k, k - 1, \ldots, 1$, pick uniformly $k - i + 1$ items from among those that have rank $i + 1$, and decrease their rank to i. At the end, the k winners of rank 1, are chosen to be our configuration. Call an arbitrary ranking valid if (a) each item of rank $i \geq 2$ belongs to $L_{i-1} \cup \ldots \cup L_k$, and (b) there are exactly $k - i + 1$ items of rank $\leq i$ in $L_i \cup \ldots \cup L_k$. McGeoch and Sleator prove that the above tournament generates the uniform probability distribution on all valid rankings, and use this fact to prove that PARTITION is optimally competitive.

Our approach is different. First, assume that we are looking for a stable algorithm. Thus we need to specify a probability distribution $P(\omega)$ on the configuration set which is used by this algorithm when the current offset function is ω. How can we derive this distribution? Suppose that the requests are generated by a so-called lazy adversary, that is one that starting at ω only makes requests that do not increase the optimal cost. In other words, the requests are in the support of ω. We can assume that the adversary never requests the revealed items, and thus each lazy sequence consists of at most $k - 1$ requests, and the final offset function is a cone. We refer to such request sequences as adversary lazy strategies.

What would be the best probability distribution that would protect us against such an adversary? Clearly, the ideal distribution is one in which all such lazy strategies have the same cost. (We leave it to the reader to verify that PARTITION does not satisfy this property for $k \geq 3$.) View the problem as a two-person zero-sum game. Let our player determine his configuration. Let the adversary determine his lazy strategy, item by item. Using the fact that the value of an optimal mixed strategy against a pure strategy which appears with nonzero probability in some optimal mixed strategy gives the value of the game, it is not hard to see that the adversary should pick the first request uniformly from the support. It seems reasonable that the optimal distribution for our player would match the optimal adversary strategy. This yields the following algorithm.

Algorithm EQUITABLE. The algorithm is defined by a probability distribution $P_X(\omega)$ of being in a configuration X when the current offset function is ω. Select X as follows: Let $X = \emptyset$. While $|X| < k$ select a point x uniformly from $S(\omega^X) - X$ and add this point to X. $P_X(\omega)$ is the probability of selecting X using the above random process.

In other words, $P_X(\omega)$ is the probability of reaching the cone on X if, starting at ω, at each step a request is chosen uniformly from the support. For simplicity, we will use the same notation $P(\omega)$ for the distribution of EQUITABLE and for the random process that generates this distribution. Only valid configurations have positive probability of being used by EQUITABLE.

Denote the probability that EQUITABLE is covering x when in ω by $P_x(\omega)$. Obviously, $P_x(\omega) = 0$ for $x \notin S(\omega)$ and $P_x(\omega) = 1$ for $x \in S(\omega) - N(\omega)$. Let M be any set such that $N(\omega) \subseteq M \subseteq S(\omega)$.
We can as well assume \(P(\omega) \) initializes \(X \) to \(S(\omega) - M \) instead of \(\emptyset \). Therefore
\[
P_x(\omega) = \frac{1}{|M|} \left[\sum_{\omega \in M} P_x(\omega) \right]
\] (5)

Lemma 3 If the current offset function is \(\omega \), and the request is \(r \), then the cost of **Equitable** on this request is \(1 - P_x(\omega) \), the probability of not being on \(r \).

Proof: It is sufficient to show how **Equitable** can be “implemented” as a behavior algorithm \(B \) that has the following properties: (i) if a requested item is in the cache, then \(B \) does not move, and (ii) if a request is not in the cache, then \(B \) only swaps one item. By “implement” we mean that at each step \(B \) induces the same probability distribution as **Equitable**.

Given an offset function \(\omega \), a configuration \(X \) of \(B \), and a request \(r \), we want to define how \(B \) will serve \(r \). \(B \) orders \(X \) randomly as follows: a permutation \(x_1x_2...x_k \) is chosen with the same probability that this would be the order of the items of \(X \) were chosen by \(P(\omega) \), given that the set \(X \) was chosen. Let \(j \) be the largest integer such that \(X + r - x_j \in V(\omega^r) \). Then \(B \) replaces \(x_j \) in the cache by \(r \).

Note that if \(r \in X \) then \(x_j = r \) and no actual swap is needed. If \(r \notin S(\omega) \) then we have \(j = k \).

In the last case, if \(r \notin S(\omega) - X \), then there is a unique \(p \) such that \(r \in S(\omega^{X_{p-1}}) - S(\omega^{X_p}) \). Equivalently, both \(x_p \) and \(r \) are in the last layer of \(\omega^{X_p} \). By the choice of \(p \), we have \(X - x_p + r \in V(\omega^r) \) and \(X - x_i + r \notin V(\omega^r) \) for \(i > p \). Therefore \(j = p \), and we conclude that \(j \) is the index for which \(x_j \) and \(r \) are in the last layer of \(\omega^{X_{j-1}} \). Additionally, we have \(x_i \in S(\omega^{r+X_{i-1}}) - X_{i-1} - r \) for all \(i < j \).

\(B \) clearly satisfies conditions (i) and (ii) above, and it generates only configurations in \(V(\omega^r) \), so it remains to show that it induces the same distribution on \(V(\omega^r) \) as **Equitable**. The proof is by induction on the number of requests. It is certainly true in the initial state, so assume that it holds for some offset function \(\omega \). We will show that it also holds for \(\omega^r \). We can assume that when \(P(\omega^r) \) chooses its configuration \(Y \), it initializes \(Y = \{r\} \) and then it selects the remaining \(k - 1 \) items \(y_1, \ldots, y_{k-1} \) of \(Y \). Denote \(Y_i = \{y_1, \ldots, y_i\} \) for each \(i \). Recall that each \(y_{i+1} \) is uniformly distributed in \(S(\omega^{Y_{i+1}}) - Y_i - r \).

We can also think of \(B \) as generating a sequence of \(k - 1 \) items other than \(r \), namely the \(x_1, \ldots, x_{j-1}, x_{j+1}, \ldots, x_j, \ldots, x_k \). For convenience, rename this sequence \(z_1, \ldots, z_{k-1} \). Let \(Z_i = \{z_1, \ldots, z_i\} \) for each \(i \leq k - 1 \), and \(Z = Z_{k-1} + r \). We want to show that random variables \(Y \) and \(Z \) have the same distribution. In order to do so, it is sufficient to prove the following claim: For each \(i \), \(z_{i+1} \) is uniformly distributed in \(S(\omega^{Z_{i+1}}) - Z_i - r \). We break the proof into two cases.

Case A: \(r \notin S(\omega) \). Then \(j = k \), and \(z_i = x_i \) for each \(i \leq k - 1 \). Then, since \(S(\omega^{r+X_i}) - X_i - r = S(\omega^{X_i}) - X_i \) for \(i \leq k - 2 \), both processes make the same random choices at each step, and the claim follows.

Case B: \(r \in S(\omega) \). The proof is by induction on \(i \). It holds vacuously for \(i = 0 \). If \(z_{i+1} = x_{i+1} \) then
\[i + 1 < j, \ Z_i = X_i \] and \(x_{i+1} \) was chosen uniformly from \(S(\omega^{X_i}) - X_i \). But \(x_{i+1} \) is in \(S(\omega^{r+X_i}) - X_i - r \) because \(X + r - x_j \in V(\omega^r) \). Since \(S(\omega^{r+X_i}) - X_i - r \subseteq S(\omega^{X_i}) - X_i \), we obtain that \(x_{i+1} \) is distributed uniformly in \(S(\omega^{X_i+r}) - X_i - r \). In the other case, if \(z_{i+1} = x_{i+2} \) then \(x_{i+2} \) was chosen uniformly from \(S(\omega^{X_i+1}) - X_{i+1} = S(\omega^{r+Z_i}) - Z_i - r \), completing the proof. □

Example: Let \(\omega = (a|b,c|d|e,f) \). The following chart summarizes the distribution of \textsc{equitable}:

<table>
<thead>
<tr>
<th>(X)</th>
<th>{a, b, c, d}</th>
<th>{a, b, c, e}</th>
<th>{a, b, c, f}</th>
<th>{a, b, d, e}</th>
<th>{a, b, d, f}</th>
<th>{a, c, d, e}</th>
<th>{a, c, d, f}</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P_X(\omega))</td>
<td>(\frac{1}{10})</td>
<td>(\frac{3}{20})</td>
</tr>
</tbody>
</table>

To illustrate how to obtain the above numbers, consider the probability of \(X = \{a, b, c, e\} \). In the process used to define \textsc{equitable}, \(X \) can be generated in 24 different orders. The permutations \(\{a, b, c, e\}, \{a, c, b, e\}, \{b, a, c, e\}, \{c, a, b, e\}, \) and \(\{c, b, a, e\} \) have probabilities \(\frac{1}{6} \cdot \frac{1}{6} \cdot \frac{1}{3} = \frac{1}{36} \). The permutations \(\{a, b, e, c\}, \{a, c, b, e\}, \{b, a, e, c\}, \) and \(\{c, a, e, b\} \) have probabilities \(\frac{1}{6} \cdot \frac{1}{6} \cdot \frac{1}{2} = \frac{1}{36} \). The permutations \(\{a, e, b, c\}, \{a, e, c, b\}, \{b, e, a, c\}, \) and \(\{c, e, a, b\} \) have probabilities \(\frac{1}{6} \cdot \frac{1}{6} \cdot \frac{1}{2} = \frac{1}{18} \). The permutations \(\{b, c, e, a\} \) and \(\{b, e, c, a\} \) have probabilities \(\frac{1}{6} \cdot \frac{1}{6} \cdot \frac{1}{3} = \frac{1}{36} \). Permutations \(\{e, a, b, c\}, \{e, a, c, b\}, \{e, b, a, c\}, \) and \(\{e, c, a, b\} \) have probabilities \(\frac{1}{6} \cdot \frac{1}{6} \cdot \frac{1}{2} = \frac{1}{36} \). Permutations \(\{e, b, c, a\} \) and \(\{e, c, b, a\} \) have probabilities \(\frac{1}{6} \cdot \frac{1}{6} \cdot \frac{1}{3} = \frac{1}{36} \). So the probability of \(X \) is \(\frac{3}{20} \).

What is the probability \(P_c(\omega) \)? Item \(c \) can be generated in a number of ways. With probability \(\frac{1}{6} \), it can be generated in the first step. With probability \(\frac{5}{6} \) it can be generated after \(b \). By considering all possible sequences ending at \(c \), we obtain \(P_c(\omega) = \frac{7}{10} \). □

Lemma 4 The Commutativity Lemma: For each offset function \(\omega \) and any two items \(x, y \in S(\omega) \)

\[
P_x(\omega) + P_y(\omega^x) = P_y(\omega) + P_x(\omega^y).
\]

Proof: The proof is by induction on the \(n = |N(\omega)| \). If \(n = 0 \), then the lemma holds vacuously. In the inductive step, suppose that \(\omega = (L_1|...|L_k) \), and that the lemma holds for every offset function with fewer non-revealed items, in particular for each \(\omega^z \) where \(z \in N(\omega) \).

The lemma is obvious if \(x, y \) are in the same layer. So we can assume that \(x \in L_i, y \in L_j \), for some \(1 \leq i < j \leq k \). If \(x \) is revealed then the lemma is clearly true. So assume \(x, y \in N(\omega) \). Note that \(\omega^{pq} = \omega^{qp} \) for all items \(p \in S(\omega) - L_k \) and \(q \in S(\omega) \). Then, if \(j < k \), using (5) and the inductive assumption, we have

\[
P_x(\omega) + P_y(\omega^x) = \frac{1}{n} \sum_{z \in N} [P_x(\omega^z) + P_y(\omega^{xz})] = \frac{1}{n} \sum_{z \in N} [P_y(\omega^z) + P_x(\omega^{zy})] = P_y(\omega) + P_x(\omega^y).
\]

Suppose now \(j = k \), and let \(\ell = |L_k| \). If \(z \in L_k \) then \(P_y(\omega^{xz}) = 0 \) and \(P_x(\omega^z) = P_x(\omega^y) \). Therefore, after using (5) and the inductive assumption for \(\omega^z \) when \(z \in N - L_k \), we have

\[
P_x(\omega) + P_y(\omega^x) = \frac{1}{n} \sum_{z \in N - L_k} [P_y(\omega^z) + P_x(\omega^{zy})] + \frac{1}{n} \sum_{z \in L_k} P_x(\omega^z)
\]

11
\[
P_y(\omega) + \frac{1}{n} \sum_{z \in N - L_k} P_x(\omega^y_z) + \frac{1}{n} \sum_{z \in L_k} P_x(\omega^y) = P_y(\omega) + \frac{n - \ell}{n} P_x(\omega^y) + \frac{\ell}{n} P_x(\omega^y) = P_y(\omega) + P_x(\omega^y).
\]

In the last step we applied \((5)\) to \(P_x(\omega^y)\) with \(M = N(\omega^y) = N - L_k\). \(\Box\)

Lemma 5 Let \(\omega = (L_1| \ldots |L_k)\) be any offset function. The cost of **Equitable** for \(\omega\) is the same on all lazy adversary strategies.

Proof: The proof is by induction on \(n = |N(\omega)|\). The base case, \(n = 0\), is trivial. For the inductive step, suppose we are given two lazy strategies \(x\alpha\) and \(y\beta\). Let \(L_i\) be the first non-revealed layer. Each lazy strategy strategy must contain an item from \(L_i\), and thus, by Lemmas 3 and 4, we can assume that \(x, y \in L_i\). Then **Equitable** has the same cost on \(x\) and \(y\), and \(\omega^x\) and \(\omega^y\) are identical, up to a symmetry. Since, by the inductive assumption, the cost of **Equitable** on \(\alpha\) and \(\beta\) is the same, we are done. \(\Box\)

Theorem 2 Algorithm **Equitable** is \(H_k\) competitive.

Proof: Let \(\Phi(\omega)\) be cost of **Equitable** in a lazy adversary strategy for \(\omega = (L_1| \ldots |L_k)\). This is well defined because of Lemma 5. By its very definition, \(\Phi\) satisfies inequality \((2)\) when \(r \in S(\omega)\).

For \(r \notin S(\omega)\), we proceed by induction on \(k\). The base case, \(k = 1\), is trivial: \(\Delta \Phi = 0 = H_1 - 1\). Assume now \(k > 1\). Since \(\sum_{x \in S(\omega)} P_x(\omega) = \sum_{x \in S(\omega^r)} P_x(\omega^r) = k\), \(S(\omega^r) = S(\omega) + r\), and \(P_x(\omega^r) = 1\), we have \(\sum_{x \in S(\omega)} [P_x(\omega) - P_x(\omega^r)] = 1\). We conclude that there exists an \(x \in S(\omega)\) such that

\[
P_x(\omega) - P_x(\omega^r) \leq \frac{1}{|S(\omega)|} \leq \frac{1}{k}.
\]

We can assume that \(x \in L_i\) with \(i \neq 1\), for if \(x \in L_1\) then \(P_x(\omega) = 1\) and \(P_x(\omega^r) = P_y(\omega^r)\) for any \(y \in L_2\). Let \(\mu\) be the same as \(\omega^x\) but with the first layer \(\{x\}\) removed. Then \(\mu\) is an offset function for the cache with \(k - 1\) pages. We have \(\Phi(\mu) = \Phi(\omega^x)\) and, similarly, \(\Phi(\omega^{rx}) = \Phi(\mu^r)\). Therefore

\[
\Delta \Phi = \Phi(\omega^r) - \Phi(\omega) = [\Phi(\omega^{rx}) + 1 - P_x(\omega^r)] - [\Phi(\omega^x) + 1 - P_x(\omega)]
\]

\[
\leq \Phi(\mu^r) - \Phi(\mu) + \frac{1}{|S(\omega)|} \leq H_{k-1} - 1 + \frac{1}{k} = H_k - 1,
\]

completing the proof. \(\Box\)

Time and Space Complexity. Let \(B\) stand for the behavior version of **Equitable**, as defined in the proof of Lemma 3. As defined, the space required by \(B\) is \(O(n)\), where \(n\) is the number of past requests. We now show how to improve the space complexity to \(O(k^2 \log k)\). Let \(M = [5k^2 H_k]\). Modify \(B\) as follows: if the current offset function \(\omega\) satisfies \(|S(\omega)| = M\), and if \(X\) is \(B\)'s configuration, then \(B\) executes the following **forgiveness** step: it replaces the offset function \(\omega\) by the work function \(\chi_X - k + 1\), where \(\chi_X\) is the cone on \(X\). (See [5, 4] for other examples of the
forgiveness method.) Note that $\chi_X - k + 1 \leq \omega$, so B cannot benefit from this action. B does not incur any cost, but the new offset function is χ_X, which means that the optimal cost of this move is $\Delta opt = -k + 1$.

In order to prove that B is still H_k-competitive, we use a more subtle potential argument. Define a phase to be the sequence of steps in-between two forgiveness moves. Let Φ be the potential introduced in Theorem 2. Initially and after each forgiveness move, let $\Psi = 0$. For each move (other than forgiveness) define the quantity $\Delta \Psi = H_k \Delta opt - \Delta cost - \Delta \Phi$. Since Φ and EQUITABLE satisfy (2), $\Delta \Psi \geq 0$ for all moves in the phase. Therefore, $\Psi \geq 0$ at all times. We will refer to each $\Delta \Psi$ as the savings at a given step, and let Ψ stand for the total savings up to a given step of a given phase. By summing over all requests, if Φ and Ψ satisfy

$$ \Delta cost + \Delta \Phi + \Delta \Psi \leq H_k \cdot \Delta opt $$

at each step, then EQUITABLE is H_k-competitive. By the very definition of Ψ, the inequality is satisfied for each step other than forgiveness. In the forgiveness step we have $\Delta cost = 0$, $\Delta \Phi \leq 0$, $\Delta opt = -k + 1$ and $\Delta \Psi = -\Psi$, so it suffices to show the following claim:

Claim A: When $|S(\omega)| = M$ then $\Psi \geq H_k(k - 1)$.

Consider a phase ending at ω. For each $m = k, \ldots, M - 1$ there was a step in this phase when the offset function μ satisfied $|S(\mu)| = m$ and the new request was $r \notin S(\mu)$. At that time, from the proof of Theorem 2, we know that $\Delta \Psi$ satisfies $\Delta \Psi \geq \frac{1}{k} - \frac{1}{m}$. So at the end of the phase we have

$$ \Psi \geq \sum_{m=k}^{M-1} \left(\frac{1}{k} - \frac{1}{m} \right) = \frac{M}{k} - H_{M-1} + H_{k-1} - 1 $$

$$ \geq kH_k - H_k + 4kH_k - 5k^2H_k \geq H_k(k - 1) $$

proving Claim A. The last inequality uses the fact that $\ln k \leq H_k \leq \ln k + 1$.

We now show how B can be implemented in time $O(k^2)$ per request. Let ω be the current offset function, X be the current configuration for B, and r be the request. Updating ω can be accomplished in time $O(k \log k)$ using appropriate data structures to represent the layers of the offset function. Given an order for the points of X, finding the index j described in Lemma 3 can be easily accomplished in $O(k)$ time once we note that we only need to keep track of the locations of each $x_i \in X$ and the cardinalities of the L_i and not the L_i themselves. So, it suffices to show a $O(k^2)$ method for finding an ordering of X which is consistent with Lemma 3. This will be done by induction on the number of requests since the last time ω was a cone. When ω is a cone, each permutation appears with equal probability. This can be accomplished in time $O(k)$ by uniformly selecting k points from X one at a time. Assume that X is ordered, and that Z is defined as in the proof of Lemma 3. Arrange the element of Z in the order $\{z_1, \ldots, z_{i-1}, r, z_i, \ldots, z_{k-1}\}$ with probability proportional to the probability that Z would be chosen by $P(\omega')$ in this order.
Finding the probabilities for each of these k orders takes time $O(k)$, giving the overall time $O(k^2)$ for ordering Z. An argument analogous to the proof of Lemma 3 shows that using this method for updating the ordering yields the same distribution at each step as that of Equitable. We conclude this section with the following theorem.

Theorem 3 Algorithm Equitable can be implemented in $O(k^2 \log k)$ memory and $O(k^2)$ time per request.

5 Final Comments

Both Partition from [13], and the naive implementation of Equitable are very time and space consuming. They both use $O(n)$ space, where n is the number of past requests. We have shown that Equitable can be implemented in space $O(k^2 \log k)$ and time $O(k^2)$ per step, independent of n. Algorithm Mark, although not optimally competitive, uses only $O(k)$ memory and $O(1)$ time for each request. One problem that we leave open is whether there is a simple H_k-competitive algorithm for paging that uses only with the same performance as Mark. Raghavan and Snir in [14] investigated a memory versus randomization trade-off in online algorithms. Is there also a trade-off between memory and competitiveness?

It would also be interesting to extend the applications of work functions to other approaches to competitive analysis. The competitive analysis has been criticized for being overly pessimistic. Addressing this problem, the most recent work on the competitive analysis of paging moves towards relaxing the definition of competitiveness. Koutsoupias and Papadimitriou [9] used work functions to analyze paging under two refined notions of competitiveness. The first one restricts the adversary to using a distribution chosen from a given set of distributions. The second compares two classes of algorithms by allowing the server to choose an algorithm from the first set, the adversary to choose an algorithm from the second set, and considering the worst case ratio of costs of the two algorithms.

There is also some recent research in this direction that does not involve work functions. In [8] the paging problem is considered in the case where the requests come from a Markov process. In [16] both the paging and weighted cache problems are considered as linear programming problems and the resulting dual problem is investigated. Several results about the so-called loose competitiveness of these problems are proven. In [1] and [7] the paging problem is addressed with the assumption that after any particular request the next request is likely to be from a small set of nearby items.

We believe that the work function approach can be used to simplify and possibly refine the results from these papers, and ultimately lead to a more systematic and uniform treatment of different approaches to competitive analysis of paging.
References

